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Abstract: Research on a new system implementing the AQ  learning methodology, 
called AQ20, is briefly described, and illustrated by initial results from an 
experimental version.  Like its predecessors, AQ20 is a multi-purpose learning 
system for inducing general concepts descriptions from concept examples and 
counter-examples. AQ20 is viewed as a natural induction system because it aims 
at producing descriptions that are not only accurate but also easy to understand 
and interpret. This feature is achieved by representing descriptions in the form of 
attributional rulesets that have a higher representation power than decision trees 
or conventional decision rules. Among new features implemented in AQ20 are the 
ability to handle continuous variables without prior discretization, to control the 
degree of generality of rules by a continuous parameter, and to generate more 
than one rule from a star. Initial experimental results from applying AQ20 to 
selected problems in the UCI repository demonstrate a high utility of the new 
system.  
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1. Introduction  

The AQ learning methodology traces its origin to the Aq algorithm for 
solving general covering problems of high complexity (Michalski, 1969a, 1969b).  
An implementation the Aq  algorithm in combination with the variable-valued 
logic representation produced the first AQ learning program, AQVAL/1, which 
pioneered research on  general-purpose inductive learning systems (Michalski, 
1975). Subsequent implementations, developed over the span of many years, 
added many new features to the original system, and produced highly versatile 
learning methodology, able to tackle complex and diverse learning problems.  



One of the recently added features is pattern discovery mode, which allows 
the program to generate rulesets representing strong patterns in large volumes of 
noisy data (Michalski and Kaufman, 2000b). The pattern discovery mode 
complements the original theory formation mode that determines complete and 
consistent data generalizations.   

Due to a wide range of features and a highly expressive representation 
language, recent members of the AQ family of learning programs arguably belong 
to the most advanced symbolic learning systems.  They have been used in a wide 
range of domains, including medicine, agriculture, engineering, image processing, 
economy, sociology, music, geology, and others.  An early application of AQ to 
soybean disease diagnosis was considered one of the most significant 
achievements of machine learning  (Michalski and Chilausky, 1980). 

The rapid development of computer technology and high-level 
programming languages often stimulated researchers to port existing versions of 
the methodology to new programming environments. AQ programs have been 
written in Pascal, Fortran, InterLisp, CommonLisp, C and now C++, and for a 
variety of platforms, including IBM 360, Symbolics, Next/Step, Digital Vax, 
Digital Ultrix, SunOS 1.0 and 2.0, MacOS, MS-DOS, Windows and recently 
Linux. These developments were done in an academic environment and primarily 
for educational purposes. Consequently, they often lacked stability and reliability 
required by outside users who were most interested in practical applications and 
the simplicity of program’s use rather than in research ideas. As a result, despite of 
their conceptual advantages, AQ programs met so far a rather limited use.   

Before undertaking the task of developing a new AQ program, we analyzed 
some of the most stable programs, such as AQ15 (Michalski et al., 1986), and 
AQ18 (Kaufman and Michalski, 2000a) in order to identify parts of the code that 
needed restructuring.  This analysis indicated that the above implementations were 
optimized for speed, rather than for the extendibility or comprehensibility of the 
code.  As the last two concerns were of great interest to us, we decided to give 
AQ20 a fresh new start.  

Using knowledge acquired from the analysis of the previous codes, a new 
design aims at making AQ20 reliable, easy to use, easy to modify and extend, 
while including features previously implemented in AQ rule learning systems. The 
aim of AQ20 is to become a machine learning environment that supports users in 
conducting machine learning experiments. 

 2. A Brief Review of the AQ Methodology 

To make the paper self-contained, this section reviews very briefly some of 
the basic features of AQ learning. A detailed description of various aspects of the 
methodology can be found in (Michalski, 1969a; Michalski, 1974;  Michalski, 
1983; Michalski, 2001).  

AQ pioneered the progressive covering (a.k.a. “separate and conquer”) 
approach to concept learning. It is based on an algorithm for determining quasi-



  

optimal (optimal or sub-optimal) solutions to general covering problems of high 
complexity (Michalski, 1969b). The central concept of the algorithm is a star, 
defined as a set of alternative general descriptions of a particular event (a “seed”) 
that satisfy given constraints, e.g., do not cover negative examples, do not 
contradict prior knowledge, etc. In its simplified version, the algorithm starts by 
randomly selecting a “seed”  from among concept examples, and then creates a 
star for that example. A member (a rule) of the star that satisfies a given 
preference criterion is selected, and examples covered by it are removed from the 
set of concept examples. A new seed is selected from the uncovered-so-far 
examples, and the process repeats until there are no more examples to be covered.  

In AQ20, the condition of selecting only one rule from a star has been 
relaxed and more than one rule can be selected, which speeds up the learning 
process.  The seed generalization process takes into consideration the type of 
variables in the training data. AQ20 distinguishes between the following types of 
variables: binary, nominal, linear, continuous, and structured (Kaufman and 
Michalski, 1996).  

Previous versions of AQ dealt with continuous variables by discretizing 
them into a number of discrete units, and then treating them as ordinal variables. 
AQ20 does not require such discretization, as it automatically determines ranges 
of continuous values for each variable occurrence in a rule.  

The AQ learning process can proceed in one of two modes: (1) the theory 
formation mode (TF), and (2) the pattern discovery mode (PD). In the TF mode, 
AQ learns rules that are complete and consistent with regard to the data. This 
mode is mainly used when the training data can be assumed to contain no errors. 
The PD mode is used for determining strong patterns in the data. Such patterns 
may partially inconsistent or incomplete with regard to the training data. The PD 
mode is particularly useful for mining very large and noisy databases.  

The core of the AQ algorithm is the star generation, which is done in two 
different ways, depending on the mode of operation (TF or PD.  In TF mode, the 
star generation proceeds by selecting a random positive example (called seed) and 
then generalizing it in various ways to create a set of  consistent generalizations 
(that  cover the positive example and do not cover any of the negative examples).  
In PD mode, rules are generated similarly, but the program seeks strong patterns 
(that may be partially inconsistent) rather than fully consistent rules. 

The star generation is an iterative process.  First, the seed is  extended-
against each negative example (this is a pair-wise generalization operation). These 
extensions are then logically multiplied out to form a star, and the best rule (or 
rules) according to a given multi-criterion functional (LEF) is selected. LEF is 
composed from elementary criteria and their tolerances so that it best reflects the 
needs of the problem at hand. The program uses beam search to speed-up this 
process.  The beam width is defined by the maxstar parameter.  For details, see 
e.g., (Michalski et al. 1986). 



In the original version of the methodology, only one rule, the best 
according to LEF, was selected.  In AQ20, one or more rules may be selected from 
a star, depending on the degree of intersection between rules. The procedure for 
selecting rules from a star works as follows: 

1 Sort the rules in the star according to LEF, from the best to the worst. 

2 Select the first rule, and compute the number of examples it covers. 
Select the next rule, and compute the number of new training examples it 
covers.  

3 If the number of new examples covered exceeds a 
new_examples_threshold, then the rule is selected, otherwise it is 
discarded. Continue the process until all rules are inspected. 

The result of this procedure is a set of rules selected from a star.  The list of 
positive_events_to_cover is updated by deleting all those events that are covered 
by these rules. A new seed is selected, and the entire process is repeated. It 
continuous until there the list positive_events_to_cover becomes empty.  

1. A Simple I llustration of an AQ Execution 

This section illustrates how AQ20 learns rules that characterize a class of 
events in Theory Formation mode. It also shows the format of an AQ20 input file. 
Various program parameters and options were omitted due to the space limitation. 
These are explained in the AQ20 Users’  Guide. 

The input consists of a set of events, in which each event is classified either 
as a member of the target class (positive event) or not a member  (negative event). 
Let’s assume that an event is defined by values of four nominal variables: X, Y, Z 
and GROUP. The first step in preparing an input to the program consists of 
defining  attributes and their domains. Each attribute must be assigned a well-
defined domain. A domain may be shared, however, by one or more attributes. 

 Since in our example variables are nominal, their domains are unordered 
sets. Let’s assume that the domain of X, denoted domain_x, is a set { 0, 1, 2} , the 
domain of Y and Z, denoted domain_yz is a set { 0, 1} , and the domain of 
GROUP, denoted domain_group, is a set { good, bad} . The above information is 
communicated to AQ20 by an input shown below:  
 
Generic Domains  
{  
     domain_x  nominal {  0, 1, 2 }  
     domain_yz nominal {  0, 1 }  
     domain_group   nominal {  good, bad }  
}  
Attributes 
{  



  

      X            domain_x     
      Y            domain_yz   
      Z            domain_yz  
      GROUP  domain_group   
}  

In addition to attributes and their domains, a user may define various control 
parameters, or allow the system use their default values.  An AQ run corresponds 
to a learning session.  The following section illustrates how to set the output 
variable(s) to define the target class (GROUP is good), and how to set the maxstar 
parameter (in this case it is equal to 1, that is only one rule is maintained during 
the star generation).  The LEF for this experiment is MaxPositiveCoverage with 
tolerance 0% and MinNegativeCoverage with tolerance 0%.  This means that AQ 
will prefer rules with have high positive coverage and low negative coverage. 

Runs 
{  
    run1_simple_example_of_AQ20 {  
         output [GROUP = good ] 
         maxstar = 1 
         LEF {  (MaxPositiveCoverage, 0),  (  MinNegativeCoverage, 0 ) }  
    }   
}   
Events 
{  
     X, Y, Z, GROUP 

   0, 0, 0,  good 
   2, 0, 1,  good 
   1, 1, 1,  good 
   1, 1, 0,  bad 
   2, 1, 0,  bad 
   0, 1, 1,  bad 

}  

The algorithm starts by creating two classes of events, one called positive, 
and one called negative.  The positive events are those with GROUP=good, and 
remaining are negative events.  The algorithm selects a random positive seed, say, 
the first event on the list  (0,0,0), which can be represented as a condition 
[X=0][Y=0][Z=0].  This seed is used to generate the first star.  Elementary partial 
stars are generated by applying  the extension against operator to the seed and 
each negative example (see Section 6.3 for an explanation). The first elementary 
partial star is obtained be extending the seed (0,0,0) against the first negative 
example (1,1,0). This operation produces two alternative, maximally general rules 
that cover the seed and do not cover the negative event: 

{ [X=0, 2] (p=2, n=2),  [Y=0] (p=2, n=0)}  



In the first rule (read: X takes value 0 or 2), p=2 means that the rule covers 2 
positive events (one is the seed), and n=2 means that it also covers 2 negative 
events. Let’ s us assume that LEF selects only one rule [Y=0], because it has the 
same positive coverage as the first rule, but lower negative coverage. The obtained 
rule constitutes a reduced elementary partial star { [Y=0]} . By extending the seed 
against the second negative example, another elementary partial star is generated : 

{ [X=0,1] (p=2, n=2), [Y=0] (p=2, n=0)}  

The obtained star is logically multiplied by the previous partial elementary star, 
which produces a partial star { [X=0,1][Y=0], [Y=0]} . The positive and negative 
coverage is calculated again for each of the rules. [X=0,1][Y=0] covers 1 positive 
and 0 negative events, while [Y=0] covers 2 positives and 0 negatives. According 
to LEF, the second rule is better. Since the parameter maxstar is 1, only one rule 
can be selected, so the resulting partial star is  

{ [Y=0]} . 

A partial star obtained from extending the seed against the third negative example 
is: 

{ [Y=0] (p=2, n=0), [Z=0] (p=2, n=1)}  

By multiplying the two elementary partial stars, and using absorption laws, the 
following partial star is created: 

{ [Y=0] (p=2, n=0), [Y=0][Z=0] (p=1, n=0)} . 

It contains two rules, one covering 2 positive events and the other one covering 
only 1 positive event. None of the rules covers any negatives. As the second rule 
is subsumed by the first one, it  deleted from the star. 

In general, after a partial star (the “star-generated-so-far”) is determined, 
all rules that are subsumed by other rules are deleted.  When this process is 
completed for the last negative example, a star of the given seed is obtained.  
AQ20 then selects from it one or more rules, as described above.  In our case, the 
algorithm produces just one rule [Y=0]. 

Because this rule does not cover all positives example (in this case, the 
third positive event), the above process is repeated for another randomly selected 
seed from the examples uncovered by the selected rule/s. This is the event  
(1,1,1,good).  The second star generation process gives the rule: { [X=1][Z=1] 
(p=1,n=0)} , which completes the learning process.  

The above two rules constitute a complete and consistent description of the 
good GROUP, which AQ20 outputs in the form: 

[GROUP = good] <- [Y=0]  
[GROUP = good] <- [X=1][Z=1] 



  

6. New Features in AQ20 

AQ20 is not just a reimplementation of the AQ methodology, but it comes 
along with several new features not present in previous versions. One of the 
concerns of the authors was the ease of extending the program in the future. For 
this reason,  AQ20 employs an object-oriented architecture. The architecture of 
the classes (which underwent a few redesign processes) provides, through 
polymorphism, an easy mechanism for adding new features. Adding binary 
attributes to AQ20 was a matter of minutes, while adding the linear ones took less 
than half an hour. 

One of the most important new features in AQ20 is handling of continuous 
variables without prior discretization. This feature was implemented in such a way 
that it provides the user with an ability to control the level of rule generalization.  
Another new feature in AQ20, already mentioned earlier, is the possibility of 
selecting more than one rule from a star, which helps to speed up the learning 
process. 

6.1 Handling of Continuous Var iables 

Previous versions of AQ handle continuous attributes through 
discretization. The domain of continuous variables is split into several ranges, 
usually using the χ2 method, or by hand. This way continuous variables are turned 
into discrete ones, and AQ works as described above. This method has the 
advantage that the search space is reduced from infinite to finite.  

One disadvantage of this approach is a limited accuracy of the 
representation, since ranges cannot be modified by the AQ algorithm. Such a 
limitation may be particularly undesirable in incremental learning, because it 
limits the locations of concept boundaries to places specified by the predefined 
ranges. Another weakness is the growth of the memory requirements with the 
accuracy of discretization. In the AQ representation of discrete variables, one bit is 
used for one discrete unit. Thus, when a variable is discretized to a larger number 
of discrete units, the memory allocated for its representation also grows.  The 
latter feature slows down the star generation process.  

In contrast to the above, AQ20 represents conditions with continuous 
variables are by ranges of continuous values. All the operations on conditions with 
continuous variables are operations on ranges, represented by two real values.  By 
moving the boundaries of the ranges, a condition can be easily specialized or 
generalized.  For example, the condition  

[ X = 2 .. 7 ] 
can be specialized by narrowing the range to: 

[ X = 3.5 .. 4.2 ] 
or  generalized by widening the range to: 

[ X = 1.8 .. 7.5 ]. 



Such operations can be done only approximately when a variable is discretized 
into a fixed number of units.  

6.1   Adjustable Level of Generality 

The level of generality of the rules can be controlled through a parameter 
called epsilon,  associated to each attribute.  This means that in the same rule, 
some attributes may be more specific than others. 

The epsilon parameter ranges between 0 and 1. When epsilon is set to 1 
(0), the learned condition with this attribute will be maximally specific (general). 
Setting epsilon to a value between 0 and 1 defines an intermediate level of 
specificity. The meaning of the specificity level depends on the attribute type.  For 
continuous and linear attributes, the epsilon parameter determines the location of 
the boundary within the distance between the negative and the positive examples 
that lead to this condition; for structured attributes, it determines a position of the 
boundary within the structure of the attribute domain.  For nominal attributes, the 
epsilon parameter is assumed to have only values 0 and 1. Any value smaller than 
0.5 is  rounded to 0, and any value greater or equal to 0.5  is rounded to 1.   

The default value of epsilon in AQ20 is 0.5. Thus, if a positive example 
has value of X equal 4, and a negative examples has value of X equal 10, the 
extension against operation will create a condition [X=0.. 7], since   (4+10)/2=7.  
The value of epsilon is fixed for a given run. A more flexible way of 
implementing epsilon would be to adjust it dynamically, so that some criterion 
related to the description quality is optimized.  

Fig 1,2,3 Rule generalization  for different values of epsilon 

Figures 1, 2 and 3 illustrate rule generation with different epsilon values. 
The number of attributes is two, so the representation space is a plane.  The five 
examples are represented by dots.  In each figure, the central dot represents the 
seed, and the other four dots represent negative examples. Generated rules are 
represented by darkened rectangles. Recall that epsilon equal to 0 means 
maximum generalization, and epsilon equal to 1 means maximum specialization. 

As shown in the Figures 1, 2, and 3, when epsilon takes a small value, the 
learned rule is more general, and when it takes a higher value, the rule is more 
specific.  



  

6.3 Implementation of  the Extension Operators 

The star generation process is governed by the  extension-against and 
extension-within operators (Michalski, 1975).  This process can also be 
decomposed in the extension against and within at the attribute level. This 
paragraph illustrates how this is done in the case of continuous attributes. For 
details on how it works for other types of attributes, consult (Michalski, 1975). In 
the remaining of this section, we will refer to the extension-against operator  
applied  with a single variable.  

The extension-against operator applied to conditions with a single variable 
has as input two conditions, one covering a positive event and the second covering 
a negative event. The result of the operator is an epsilon-controlled generalization 
of the condition for the positive event that  does not cover the negative event.   

The extension-within operator applied to conditions with a single variable 
receives as input a condition covering of a positive example, and a general 
condition that may or may not subsume the first condition. If the former is the 
case, the result of extension-within is an epsilon-controlled generalization of the 
first condition that is subsumed by the second condition.   

To illustrate how AQ20 implements these operators with the control 
parameter epsilon, suppose that the value of a continuous attribute X for the 
positive event is 4, and for the negative event is 10. In the first step, the result of 
the extension-against is the maximally general hypothesis [X < 10], that is, as if 
epsilon=0. 

After performing all the logical intersections, the result are maximally 
general hypotheses. In order to introduce the epsilon-adjustable levels of 
generality, a post-processing is applied. AQ20 determines the maximally specific 
hypothesis that covers all positive examples covered the maximally general 
hypothesis (by an operation called refunion, which is computationally quite 
simple). Subsequently, the epsilon parameter is applied for each attribute within 
the maximally specific and the maximally general hypotheses. 

6.4 Selecting M ultiple Rules from a Star  

In the rule generation process, the AQ algorithm creates a series of stars in 
order to cover all positive events. Each star contains a set of rules, all covering the 
seed of the star. In previous versions of AQ, only one (best according to LEF) rule 
was selected from the star.  

AQ20 can select more than one rule from a star. This leads to the 
possibility of covering more positive events while generating only one star.  Rules 
in a star have usually have high logical intersection, but not always. Keeping two 
or more rules that have a small logical intersection can speed-up the learning 
process, because the number of star generated can be reduced. A potential problem 
is that the rules may be less optimal, since two rules generated from the same star 
are never disjoint.  AQ20 uses a simple method to calculate the ‘gain’  obtained by 



each rule, defined as the number of new positives covered, if the rule were 
selected from the star.   

7 Experiments 

This section presents selected results from experiments in which AQ20 was 
applied to two datasets from the UCI repository, mushroom and wine, and to one 
synthetic dataset. Results from AQ20 were compared in terms of predictive 
accuracy with C4.5 and with AQ18. 

The datasets were split into training and testing events using different 
ratios in order to monitor the dependence of the predictive accuracy on the number 
of training events.  

Testing was done using the ATEST module that can execute a flexible and 
strict matching of events with rules.  Flexible matching is a technique for 
calculating the degree of confidence (a degree of match) that an event belongs to a 
class. In the case that the event does not match any of the rules constituting the 
class description, the confidence is 0. If the event matches one or more rules, the 
confidence is non-zero, and can range from 1 (strict match) to values close to 0 
(Michalski et al. 1986). 

7.1  Mushroom Database 

The mushroom database contains the descriptions of more than 8000 
different species of mushrooms, classified as poisonous or edible. Each mushroom 
is described in terms of 23 attributes, out of which 22 are discrete (some are 
nominal and some are linear), plus 1 nominal attribute representing the decision 
class.  The database was randomly split into training and testing events.  The 
number of training events was increased gradually to analyze how the predictive 
accuracy increases. 

In the experiments relative to the mushroom database the LEF was 
MinNumSelector with tolerance 30% and MaxNewPositives with tolerance 10%.  
This is the standard LEF for AQ20 and for AQ18, and results in a faster execution 
of the algorithm.  

The results are presented in confusion matrices below, in which: 
• the first row and column contain the names of the classes used in the 

experiment 
• the element a[i,j]  (i and j different than 1) contains the number of 

elements that belong to class a[i, 1] and were classified as belonging to 
class a[1, j]. 

• the classes may not cover the whole space, therefore a new class (called 
“unknown”) is automatically added 

Thus, high predictive accuracy is manifested by numbers equal or close to 
1 in the main diagonal, and 0s or small values outside the main diagonal.  The 
accuracy of a classification is defined in the experiments below as the ratio of the 



  

total number of correct classifications (the sum of the elements on the main 
diagonal in the table) over the total number of classifications (the sum of all the 
elements in the table).   For a training-testing examples ratio of 0.02, AQ20 
obtained the following results (Accuracy = 98.3%): 

Predictions  Edible Poisonous Unknown 
Edible 4061 48 0 
Poisonous 84 3765 0 
Unknown 0 0 0 

Table 1 AQ20 rule predictions when the training set included 0.02% of examples 
from the Mushroom dataset. 

For a training-testing examples ratio of 0.10, AQ20 obtained the following 
results (Accuracy = 100%): 

Predictions  Edible Poisonous Unknown 
Edible 3780 0 0 
Poisonous 0 3532 0 
Unknown 0 0 0 

Table 1 Results of AQ20 with 0.1% learning on the Mushroom database 

In addition to the high predictive accuracy, the rules learned by AQ20 were 
typically quite simple and had high coverage. For example, when learning from 
only 10% of the examples, AQ20 found the following rules : 

Rule 1:      [class = p] � [odor = c, y, f, m, p, s] 

that covers 3796 from 3916 poisonous mushrooms described in the 
repository and none of the edible mushroom, and 

Rule 2: [class = p] 
   � [cap-color = n,b,p,e,w,y] & [gill-color = b, g, r, w] & 

        [spore-print-color = r,w ] &  [ population = c,v ] & [habitat = g,l,m,d] 

        that covers 471 positive (poisonous) and 0 negative (edible).  

Predictive accuracy of AQ20 rules was compared with that of rules 
obtained from AQ18 and C4.5.  The two AQ programs extracted very similar 
rules, and their predictive accuracy is almost identical.  The rules generated by 
C4.5 are different from AQ20’s rules, since the program uses a different 
representation language.  For example C4.5 finds the following rules, all relative 
to the odor attribute.   

R1:  [class = p] � [odor = c ] 
R2:  [class = p] � [odor = y ] 
R3:  [class = p] � [odor = f ] 
R4: [class = p] � [odor = m] 
R5: [class = p] � [odor = p] 
R6: [class = p] � [odor = s] 
R7: [class = p]  � [cap-color = n] & [ring-number = 0 ] &  

                                                           [spore-print-color = w ] 



Because of C4.5 does not have the internal disjunction operator in its 
language, it generated six rules that correspond to one AQ20 rule [odor = 
c,y,f,m,p,s].  The C4.5 Rule 7 was quite different from AQ20 Rule 2.  

The following table summarizes the results of the experiments.  

 AQ18  AQ20 C4.5 
2% training 97% 98% 98.7 
10% training 99.7% 100% 99.7 
30% training 100% 100% 98.7 

Table 3 Comparison of the Predictive Accuracy of AQ20, AQ19, and C4.5 
on the Mushroom dataset 

7.2 Wine Database 

The second experiment concerned the application of AQ20 to the wine 
dataset. This dataset contains 178 events of different Italian wines, divided into 
three classes. Each event is defined by 14 attributes, 13 continuous attributes, plus 
1 nominal attribute for the class.  AQ20 generated the following rules: 

First class: 

[group = class1]  
 �    [Alcohol ≥ 12.79] &  [Alcalinity_of_ash ≤ 27.495] 
         [Total_phenols ≥ 2.095] & [Flavanoids ≥ 1.805] 
         [Color_intensity ≥ 3.4] & [Proline ≥ 679.005] 

 The rule covers all 59 events described in the dataset as belonging to this class. 

Second class: 

[group = class2]  
  �  [Color_intensity   ≤ 4.015] & [Proline ≤  718.995] 
  �  [Alcohol ≤ 13.12] & [Ash ≤  3.065] & 
        [Color_intensity ≤  4.855] & [Hue ≥ 0.785] & 
        [OD280_OD315_of_diluted_wines = 1.485..3.505]& 
        [Proline ≤ 1002.5] 
   � [Malic_acid ≤ 1.615] & [OD280_OD315 of   
         diluted_wines  ≥  1.575] & [Proline ≤  975.995] 
�[Alcohol ≤ 12.75] &  [Flavanoids ≥ 1.27] & [Proline ≤   975.995] 

All four rules represent strong but intersecting patterns for the second class, 
covering 56, 58, 36, and 56, events respectively. The total number of training 
events in class 2  was 71.  

Third class: 

[group = class3]  
    � [Hue <= 0.825] & [OD280_OD315 of diluted_wines 
          ≤ 2.055] 
[group = class3]  



  

��[Malic_acid ≥ 2.135] &   
        [Proanthocyanins ≤ 1.585] & 

           [Color_intensity ≥ 4.32][Hue ≤ 0.995] &  
      [Proline ≤ 979.995] 

The first rule covers 40 and the second one 39 events (out of the total of 48 
total events in class 3), and they are also highly intersecting (31 events). 

AQ20 generated rules that are very easy to understand by human. When 
using 50% of randomly chosen training events and 50% for testing, the following 
results were obtained (Table 4). 

Predictions � Class 1 Class 2 Class 3 Unknown 
Class 1 28 0 2 0 
Class 2 1 17 0 0 
Class 3 0 1 37 4 

Unknown 0 0 0 0 

Table 4 Results from the Wine database with 50% testing 

This means that 82 out of 90 events were classified correctly (91.1% 
accuracy). Rules with different levels of generality were tested on the wine 
dataset. The tests used 10% events for training and the remaining 90% percent for 
testing.  Results were obtained for three different values of epsilon: 0.1 (very 
general rules), 0.5 (medium) and 0.9 (highly specific). The results for the 
experiments are presented in the next 3 tables. 

Predictions � Class 1 Class 2 Class 3 Unknown 
Class 1 40 4 0 6 
Class 2 3 32 6 2 
Class 3 5 1 44 14 

Unknown 0 0 0 0 

Table 5 Confusion matrix for highly general rules (epsilon=0.1). The accuracy 
is 73.9%. 

 

Predictions � Class 1 Class 2 Class 3 Unknown 
Class 1 37 0 0 12 
Class 2 2 30 3 5 
Class 3 4 1 38 19 
Unknown 0 0 0 0 

Table 6 Confusion matrix for rules of medium generality (epsilon=0.5). The 
accuracy is 69.5%. 

Predictions � Class 1 Class 2 Class 3 Unknown 
Class 1 28 0 0 21 
Class 2 1 26 2 10 
Class 3 2 1 36 22 
Unknown 0 0 0 0 

Table 7 Confusion rules for highly specific rules (epsilon=0.9). The predictive 
accuracy is 60.4%. 



The number of events classified as “unknown” (last column) when the 
rules are highly specific (Table 7) is relatively large compared to the other tests. 
When the description of the classes becomes more and more general (epsilon=0.5; 
Table 6, and epsilon=0.1; the Table 5), the number of events classified as 
“unknown”  decreases and the number of events classified correctly increases. On 
the other hand, number of events from one class incorrectly classified as 
belonging to another class also increases with the increase of generalization for the 
rules. This is, of course, an expected behavior. 

Although the predictive accuracy increased with the rule generalization 
level, in this problem, it is preferable to classify an event as “unknown”  than to 
misclassify it (it is clearly better to classify a poisonous mushroom as unknown 
than as edible). Therefore, it is better to keep the rules for edible mushrooms more 
specialized. 

The results of AQ20 on the wine dataset were also compared with those 
from AQ18.  The wine dataset was split in 50% training, 50% testing.  The 
following table summarizes the results of the experiment with the default epsilon 
equal 0.5. 

 AQ18  AQ20 

50% training 71% 91.1% 

Table 8: Comparison of AQ18 and AQ20 on the Wine database with 50% training 

As shown in the table, AQ18’  rules did not work as well as they did in the 
previous experiment.  This result can be attributed either to an internal bug of 
AQ18 that could not be verified, or to the incapacity of AQ18 to find appropriate 
concept boundaries due to prior discretization. This result suggests that direct 
handling of continuous variables in AQ20 can significantly improve the predictive 
accuracy of the learned rules (in the case, 20%). Further experiments are needed to 
confirm this hypothesis.    

It should be noted, however, that the AQ20’s method of handling 
continuous variables is more prone to over-fitting the training dataset due to a 
more powerful representation language. Thus, choosing an appropriate epsilon is 
an important problem.   

More experiment will be done to investigate this further, trying to 
discretized the variables in a larger number of intervals, and see how this affects 
the quality of the rules. 

7.3 Synthetic Database 

The last experiment involved a designed dataset to test the ability of AQ20 
to select more than one rule from a star whenever it is desirable. A dataset 
containing 80 events belonging to two classes was generated using a general logic 
diagram.  The events were arranged in a such a way that there existed a star that 
have highly disjoint rules. Out of 80 events,  57 were used as training and 23 as 
testing.  



  

In the experiment, AQ20 was run with and without the capability of 
generating more than one rule form a star.   The number of star generated and the 
time required for learning in both cases was recorded. The results are presented in 
the table below: 

 1 rule only More than 1 rule 
Number of stars 2 1 
Time required .6 sec .4 sec 

Table 9. Time spent by AQ20 learning rules keeping more than a rule from a star 
versus learning rules by keeping only one rule from a star 

The learned hypotheses were identical in both runs, but, as shown in Table 9, 
learning with multiple rule selection from a star decreased the execution time by 
50%.  

8 Future work 

Among topics for future work are testing the program on a variety of 
problems, determining its advantages and disadvantages in comparison to other 
learning methods, such as Ripper (Cohen, 95), CN2 (Clark and Niblett, 89), C4.5 
(Quinlan, 93), those employing rough set theory (e.g., Pawlak, 91), and previous 
implementations of AQ learning.  It is planned to make these comparisons in 
terms of both the predictive accuracy and the simplicity and understandability of 
the learned rules. 

Future work includes also an  integration of AQ20 with supporting 
modules, such as Knowledge Visualizer that facilitates a visual validation of the 
learned rules (KV; Zhang, 1997), and ALPE for automatically executing and 
testing AQ learning programs  (Lee and Michalski, 1997).  

Among important features implemented in some AQ programs is 
constructive induction, which is the capacity of the algorithm to automatically 
improve the representation space for learning (e.g., Bloedorn and Michalski, 
1998). Future work will also include the employment of AQ20 in the Learnable 
Evolution Model (LEM) methodology for non-Darwinian Evolutionary 
Computation (Cervone et al, 2000). 

9 Conclusion 

This paper described a new implementation of the AQ methodology called 
AQ20.  AQ20 tries to encompass in one place many features previously found in 
several programs. It includes new features such as the capacity of keeping more 
than one rule from a star, that may greatly increase the speed of the algorithm, the 
capacity of dealing with continuous attributes without a fixed discretization, and 
the introduction of a new parameter called epsilon, that allows each attribute to be 
learned with a different level of generality.  AQ20 can be freely downloaded from 
the website: www.mli.gmu.edu/aq20 
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