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a b s t r a c t

The energy produced by photovoltaic farms has a variable nature depending on astronomical and mete-
orological factors. The former are the solar elevation and the solar azimuth, which are easily predictable
without any uncertainty. The amount of liquid water met by the solar radiation within the troposphere is
the main meteorological factor influencing the solar power production, as a fraction of short wave solar
radiation is reflected by the water particles and cannot reach the earth surface. The total cloud cover is a
meteorological variable often used to indicate the presence of liquid water in the troposphere and has a
limited predictability, which is also reflected on the global horizontal irradiance and, as a consequence,
on solar photovoltaic power prediction. This lack of predictability makes the solar energy integration into
the grid challenging. A cost-effective utilization of solar energy over a grid strongly depends on the accu-
racy and reliability of the power forecasts available to the Transmission System Operators (TSOs).
Furthermore, several countries have in place legislation requiring solar power producers to pay penalties
proportional to the errors of day-ahead energy forecasts, which makes the accuracy of such predictions a
determining factor for producers to reduce their economic losses. Probabilistic predictions can provide
accurate deterministic forecasts along with a quantification of their uncertainty, as well as a reliable esti-
mate of the probability to overcome a certain production threshold. In this paper we propose the appli-
cation of an analog ensemble (AnEn) method to generate probabilistic solar power forecasts (SPF). The
AnEn is based on an historical set of deterministic numerical weather prediction (NWP) model forecasts
and observations of the solar power. For each forecast lead time and location, the ensemble prediction of
solar power is constituted by a set of past production data. These measurements are those concurrent to
past deterministic NWP forecasts for the same lead time and location, chosen based on their similarity to
the current forecast and, in the current application, are represented by the one-hour average produced
solar power.
The AnEn performance for SPF is compared to a quantile regression (QR) technique and a persistence

ensemble (PeEn) over three solar farms in Italy spanning different climatic conditions. The QR is a state-
of-the-science method for probabilistic predictions that, similarly to AnEn, is based on a historical data
set. The PeEn is a persistence model for probabilistic predictions, where the most recent 20 power mea-
surements available at the same lead-time are used to form an ensemble. The performance assessment
has been carried out evaluating important attributes of a probabilistic system such as statistical
s ranked
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consistency, reliability, resolution and skill. The AnEn performs as well as QR for common events, by pro-
viding predictions with similar reliability, resolution and sharpness, while it exhibits more skill for rare
events and during hours with a low solar elevation.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Solar photovoltaic power (PV) generation has increased steadily
in several countries in the last 10 years, becoming an important
component of a sustainable solution of the energy problem. In
Italy, for instance, thanks also to substantial government subsides
over the past 5 years, the annual generation by PV has reached
19,418 GWh in 2013, corresponding to 7% of the total Italian
energy demand. The rate of growth is significant considering that
in 2008 the generation from PV was just 200 GWh (0.1% of total)
[1]. During the last 10 years wind power installed capacity has also
followed the same trend in Italy, going from 664 MW to 8551 MW
in 2013 [2], which has led to an annual generation of about 4.7% of
the total Italian energy demand. As a consequence more than 10%
of the total Italian energy production is now made of wind and
solar resources that have a variable nature and a limited pre-
dictability. Astronomical and meteorological factors are the main
causes of PV variability. The former are the solar elevation and
the solar azimuth, which are easily predictable without any uncer-
tainty. The amount of liquid water met by the solar radiation inside
the troposphere is the main meteorological factor influencing the
solar power production. In fact, a fraction of short wave solar radia-
tion is reflected back outside the atmosphere or absorbed by the
cloud water particles and cannot reach the earth surface. A similar
process involves other kind of particles generally defined as aerosols
that have different origins both natural (marine salt, soil erosion)
and anthropogenic (combustion). The interaction between solar
radiation and aerosols increases the amount of the diffused compo-
nent (that still reaches the earth surface contributing to PV genera-
tion) but alters only marginally the reflected and absorbed
components, which become significant only in the case of particu-
larly high aerosol concentrations, such those found in the proximity
of a volcanic eruption or during episodes of high urban pollution. The
PV panel energy efficiency is also related to air temperature (the effi-
ciency decreases at higher temperatures) [3]. Hence, the total cloud
cover (CC), the global horizontal irradiance (GHI) and air tempera-
ture at 2 m above the ground (T2M) are the meteorological variables
directly related to PV production and their limited predictability is
also reflected on PV predictions. Aerosol interactions with solar radi-
ation are generally taken into account by meteorological models, but
the aerosol distribution is based on climatological estimates.

Electricity is distributed over a region via a grid, which is an
interconnected network from suppliers to consumers. To maintain
grid stability at an effective cost, it has now become crucial to be
able to predict with accuracy the renewable energy production
which is combined with other more predictable sources (e.g., coal,
natural gas) to satisfy the energy demand [4,5]. The efforts of pro-
viding an accurate solar power prediction have now been man-
dated by recent legislation in Italy for utility companies, which
have to pay penalties proportional to the forecast errors (defined
as the difference between the day-ahead planned energy and the
actual production). This has now put a greater focus on solar power
forecasting (SPF). Even though the first methods for wind power
forecasting (WPF) and SPF were both developed in early 1980s
[6,7], the number of publications focused on WPF is much higher.

Predictions can be categorized into deterministic and proba-
bilistic forecasts. A deterministic forecast consists of a single
predicted value of the variable for each prediction time, while
probabilistic forecasting provides probability density functions
(PDFs) from which probabilities of future outcomes can be esti-
mated. Probabilistic forecasts also provide information about
uncertainty in addition to the commonly provided single-valued
(best-estimate) power prediction.

There are many examples of how probabilistic predictions can
provide a higher value than deterministic ones. For instance, one
example is estimating the optimal level of reserves that need to
be allocated to compensate for wind and solar power variability
and their limited predictability, as discussed in [8]. Another signif-
icant application is when renewable energy is traded in day-ahead
electricity markets. In [9–11] it is shown that trading future wind
energy production using probabilistic wind power predictions can
lead to higher economic benefits than those obtained by using
deterministic forecasts alone. Indeed, the maximum income for a
producer is obtained by offering in the day-ahead market an
amount of energy that can be different from the most expected
one.

Two reviews of the status of forecasting GHI on different time
scales for energy generation are reported in [12] and [13], while
different forecasting techniques for PV power are evaluated and
compared in [14], and a full review of SPF can be found in [15].
In this work we focus on short-range PV forecasting, i.e., 0–72 h
ahead. An approach to forecasting on this time range can be based
on applying statistical or machine learning techniques directly to
historical time series of PV production data. Several applications
of this kind can be found in the literatures [16–18]. In [19] it is
shown that for forecasts up to 2 h ahead the most important input
is the available observations of solar power, while for longer hori-
zons numerical weather prediction (NWP) model output becomes
crucial for a better accuracy. Even though there are several contri-
butions on the topic of probabilistic WPF [20–23]for probabilistic
PV forecasts only a few methods have been proposed in the litera-
ture. [24] and [25] propose probabilistic forecast systems for GHI
only. In [24] the system is based on a stochastic differential equa-
tion framework together with NWP for modeling the uncertainty
associated with the solar irradiance point forecast. In [25] the
GHI forecast system is based on studying the correlation of uncer-
tainty to local meteorological conditions describing synoptic-scale
atmospheric flow. The direction and magnitude of geostrophic flow
were used as an indicator of coastal cloud cover probability to pro-
duce regime-dependent forecast intervals.

In [26] PV energy probabilistic forecast for 1-h ahead are based
on a Bayesian auto regressive time series model without using
NWP. In [27] a normal distribution with zero mean and a standard
deviation dependent on the solar zenith angle and the cloud situ-
ation is assumed to describe forecast errors of GHI. In this paper
we propose the Analog Ensemble (AnEn) as a novel method for
PV power forecasting over the 0–72 h lead time period. It has been
originally proposed by [28] and [29] for deterministic and proba-
bilistic meteorological forecasting, by [30] for WPF, and by [32]
for wind resource assessment applications. The AnEn technique
provides a set of likely PV predictions (i.e., an ensemble that is a
Monte Carlo approximation of the PDF associated with future
power production) using an historical dataset of observations
and deterministic NWP. For each forecast lead time the ensemble
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set of forecasts of PV is constituted by a set of its measurements
from the past. These measurements are those concurrent to past
NWP at the same lead time, chosen across the past runs most
similar to the current forecast. In this paper AnEn performance is
compared with a quantile regression (QR) technique. For QR, as
for AnEn, only a single deterministic forecast is necessary along
with an historical dataset of predictions and observations. The
QR is a state-of-the-science method for probabilistic predictions
based on historical data sets and has been widely used for proba-
bilistic WPF [33,34,30]. Each desired quantile of the power forecast
distribution is modeled separately defining different regression
coefficients on past measured and observed PV values. Therefore,
for each power quantile, a different prediction is issued based on
the current deterministic meteorological forecast. Persistence
ensemble (PeEn) is also used as a baseline reference. The PeEn
takes the most recent 20 PV measurements at the same hour of
the day to build the PDF of PV forecast. The performances of
AnEn, QR and PeEn are compared at three solar PV farms in Italy
with a 1-year data set of measurements, by evaluating important
attributes of probabilistic predictions as resolution, reliability,
spread-skill and statistical consistency. In terms of deterministic
forecasting, the performance of AnEn and QR are also compared
with those obtainable by applying a feed-forward Neural
Network (NN) to produce a single-valued power forecast. In fact,
computing the simple mean or median of an ensemble distribution
allows to obtain a single-valued deterministic forecast. Also for this
comparison PeEn is used as a baseline reference.

The innovative aspect of the paper is to test a new method for
probabilistic PV energy forecast in the 0–72-h lead time interval.
To our knowledge there are no other contributions addressing this
topic on the same forecast lead time range. Furthermore, for the
first time an estimate on how different climatic conditions can
influence the predictability of PV forecasts is drawn.

The paper is organized as follows. Section 2 describes the
observational dataset on which the analysis is performed; Section 3
presents the prediction methods, while results are presented and
discussed in Section 4; conclusions are drawn in Section 5.

2. Observational and meteorological forecast dataset

Data collected from three PV farms have been considered in this
study. They are located in Milano (northern Italy) and Catania
(Sicily, southern Italy), both with a nominal power (NP) of
5.21 kW, and in Calabria region (southern Italy; a non-disclosure
agreement does not allow us to reveal the exact location) with a
nominal power around 5 MW. The Milano PV farm is located in
the east suburban/industrial area of Milano city. The Catania PV
farm has the same set-up as that of Milano, in terms of type of pho-
tovoltaic panels and electronic components. It is located in the sub-
urban area of Catania close to the Mount Etna volcano. Fig. 1
displays the plants’ locations.

A high level of aerosol particle concentrations due to anthro-
pogenic emissions, which, as previously explained, can sometimes
affect the ground radiation, characterizes the Milano solar farm.
Volcanic ash, released intermittently with a variable intensity by
the nearby volcano Mount Etna, may influence the power produc-
tion at the Catania solar farm, and the ash release, transport, and
dispersion is difficult to predict with a real-time forecast system.
The Calabria solar farm differs from the Milano and Catania ones,
which can be considered similar in size to the common small roof-
top installations. It is an industrial facility with a nominal power
higher than the average found in Italy for PV plants. The climatic
conditions of Calabria and Catania farms are similar, with an aver-
age number of sunny days per year larger than in Milano, where
the weather is cloudier and the presence of fog during winter is
common. A climatic analysis [35] based on meteorological
observations recorded close to the three solar farms indicates that
the average fraction of days per year with an average cloud cover
lower than 4/8 is around 45%, 60% and 66% at Milano, Calabria
and Catania, respectively. This is reflected in the ratio between
mean produced power and nominal power that is around 25% for
Milano, and 30% and 35% for Calabria and Catania farms,
respectively.

Hourly averaged power data are available for the periods
January 2010 to December 2011 (Catania), July 2010 to
December 2011 (Milano), and April 2011 to March 2013
(Calabria). Fig. 2 shows an example of time series of solar power
for each one of the power plants. Time series are plotted for one
month (i.e., July 2011).

The AnEn requires an historical set of forecast runs. To this aim
we used the Regional Atmospheric Modeling System (RAMS) [36],
which has been run for the entire period covered by PV measure-
ments. The computational domain consists for each of the three
solar farms of two nested grids with a resolution of 15 � 15 km2

and 5 � 5 km2. Every run starts at 00 UTC and is 72 h long. The
boundary conditions used are the ECMWF deterministic forecast
fields starting at 00 UTC (available every 6 h with 0.125� spatial
resolution). The Harrington parameterization [37] is used as the
radiation scheme in RAMS. Bulk microphysics parameterization is
also activated in order to account for full moisture complexity.
The forecast time series of GHI, CC, direct normal irradiance
(DNI), and T2M have been computed at the solar farm positions
through a bilinear interpolation from the finer grid. The two angles
(azimuth, AZ and solar elevation, EL) defining the sun position are
then added to the forecast set of meteorological variables used as
analog predictors (Section 3.1). In Fig. 3 shows all pairwise scatter
plots of solar power and its explanatory variables used in this
application, which allow understand their inter dependency. The
plots are produced from one month of training data (i.e., July
2010), for the Catania test case. Observed power is clearly strongly
linearly dependent on forecasted GHI and solar elevation, while the
relationship with the azimuth angle is not linear. T2M and CC show
a less evident direct dependency and a low correlation with
observed power.

3. Prediction methods

3.1. Analog Ensemble (AnEn)

For each forecast lead time t, the AnEn set of solar power fore-
casts is constituted by solar power observations from the past.
These observations are those concurrent with the past forecast at
the same lead time, chosen across the past runs most similar to
the current forecast. The metric used to rank past forecasts’ simi-
larity to the current forecast is defined as follows [28,29]:

kFt ;Atk ¼
XNv
i¼1

wi

rf i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX~t

j¼�~tðFi;t�j � Ai;tþjÞ2
r

ð1Þ

where Ft is the current forecast for the lead time t at a certain loca-
tion; At is an analog forecast for the same lead time and location as
Ft; Nv and wi are the number of physical variables and their
weights, respectively, where i is a generic index referring to differ-
ent variables; rf i is the standard deviation of the time series of the
past forecasts of a given variable at the same location; ~t is an integer
equal to the half-width of the time window over which the metric is
computed (e.g., if ~t ¼ 1 h, the distance will be computed over the
three forecast lead times corresponding to hours t � 1, t, and t
+ 1), and Ai;tþj and Fi;tþj are the values of the analog and the forecast
in the time window for a given variable. The goal is to find past fore-
casts of the meteorological variables (chosen among the ones with
the highest correlation with the quantity to be predicted, solar



Fig. 1. Map of Italy with the positions of the solar farms. For Calabria only the approximate location is plotted.
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power in this case) that were predicting similar values and tempo-
ral trend (i.e., which have a similar behavior as a function of time
along the time interval defined by ~t) compared to the current fore-
cast. The predictors used in this application are GHI, CC, T2M, AZ
and EL with a half-width time window (~t) equal to 1 h. The AZ
and EL variables are added as predictors in order to define the sun’s
position and eventually take into account the presence of obstacle
shadows (buildings or mountains, for example) influencing the
power production at some particular time of the day.

The assumption is that if similar past forecasts are found, their
errors will likely be similar to the errors of the current forecast,
which can be inferred from theirs. The main steps of the algorithm
can be summarized as follows:

� Retrieve a historical dataset of predictions (initialized at a given
time) issued by a deterministic system, a meteorological model
in this case, for the solar farm location (see Section 2 for a
description of the NWP model).

� Retrieve an historical dataset of solar power observations at the
locations of interest (see Section 2 for details).

� Choose the physical variables from the meteorological model to
be used as predictors in Eq. (1) for the predictand variable (solar
power in this application).

� For each lead time of the current forecast compute the distance
(i.e., Eq. (1)) from every past forecast issued at the same lead
time.

� For each lead time, rank all the past forecasts and select the n
forecasts with the lowest distance.
� The concurrent n past measurements are the n members that
constitute the current AnEn forecast for the lead time consid-
ered (in the current application 20 past observations are used).

The AnEn attempts to capture error dependent on a particular
process of the atmospheric flow by assigning the observed errors
from similar past situations, as described by the high-resolution
deterministic model, to the current model forecast. The AnEn has
potential advantages and disadvantages as compared to a NWP
ensemble. One advantage of the AnEnmay be to lower significantly
the real-time computational expense of generating an ensemble, as
AnEn only requires a single model forecast, as opposed to the mul-
tiple model runs of an NWP-based ensemble. Another advantage is
that the forecast uncertainty is based solely upon past observa-
tions, thereby eliminating the need to simulate all sources of
NWP forecast uncertainty via sophisticated and computationally
intensive techniques, and, as will be shown, also avoiding the need
for post-processing calibration. One disadvantage is the need of a
‘‘frozen” meteorological model in the training data set. Indeed, sig-
nificant changes in the NWP forecast configuration may prevent
the generation of skilful analogs.

The following is a simple case to illustrate how the AnEn algo-
rithm works, based on using one meteorological predictor (GHI)
and a time window equal to 0, i.e., Nv ¼ 1 and ~t = 0 in Eq. (1). Let
the current 12-h ahead forecasted GHI at a given location be equal
to 300W/m2 and assume that the past set of GHI forecasts is made
by only five forecasts for the same lead time. They are equal to:
200 W/m2, 300 W/m2, 350 W/m2, 420 W/m2 and 500W/m2. From



Fig. 2. Time series of solar power at the test locations for July 2011.
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the past data set, the five PV concurrent observations are: 300 kW,
400 kW, 390 kW, 450 kW and 600 kW, respectively. Considering
that the standard deviation of the set of GHI forecast is equal to
approximately 114.3 W/m2, it is possible to compute the five
correspondent distances between the current and the past GHI
forecast by means of Eq. (1). Those normalized distances are,
respectively: 87.4, 0, 21.8, 125.9, and 349.7. To generate a 3-
member ensemble power forecast (in real cases usually more than



Fig. 3. Pairwise scatter plots of the explanatory variables (Catania, July 2010).

100 S. Alessandrini et al. / Applied Energy 157 (2015) 95–110
10 members are used), the members will be chosen from the past
power data whose concurrent forecasts result to have the lower
three distances. In this example they are 300 kW, 400 kW and
390 kW, which now represent the current 12-h ahead ensemble
solar power forecast.

Similarly to what has been done in [30,31], an optimization
method has been applied to define the set of weights (wi) used
in Eq. (1). For all the solar farms the data sets are split into two
parts. The first 365 days (183 days for Milano) are considered as
a training period while the evaluation of the AnEn model, shown
in the following sections, is carried out on the remaining portion
of the data sets (verification period). The set of optimal weights
is defined by choosing the combination that minimizes the contin-
uous ranked probability score (CRPS, see Section 4.3) over the last
60 days of the training periods (from day 306 to day 365 for
Calabria and Catania, from day 124 to day 183 for Milano). As we
are using five predictors (GHI, CC, T2M, AZ and EL), five corre-
sponding weights can be set. All the possible combinations defined

with the constraint
P5

i¼1wi ¼ 1, wherewi 2 ½0� 0:2; . . . ;1�; are con-
sidered for the AnEn computation over the last 60 days of the train-
ing period. The weight values for the five predictors (GHI, T2M, CC,
EL and AZ) leading to the minimum CRPS following this procedure
are: 0.3, 0., 0.5, 0.1, and 0.1 for Catania, 0.4, 0.5, 0.1, and 0.0 for
Milano, and 0.3, 0.1, 0.5, 0.0, and 0.1 for Calabria, respectively.
Those values are kept constant over all the verification periods
and are used for the results shown hereafter. An example of
AnEn forecast is illustrated in Fig. 4 (top panel, see comments in
Section 3.3).
3.2. Quantile Regression (QR)

A probabilistic power forecast system based on QR [33,34] is
included in this analysis as a reference method. Considering a ran-
dom variable Y, Q(s) is defined as the value for which the probabil-
ity of obtaining values of Y below Q(s) is s. In QR, Q(s), with
0 < s < 1, is expressed as a linear combination of known regressors
and unknown coefficients, exactly as the mean of the random vari-
able Y is modeled in (multiple) linear regression. Thus the s-
quantile is modeled as:

QðsÞ ¼ b0ðsÞ þ b1ðsÞx1 þ � � � þ bpðsÞxp ð2Þ

where xp are the p known regressors, also called explanatory vari-
ables, and bp are unknown coefficients, depending on s, to be deter-
mined from N observations.

The sample bp coefficients for the s quantile can be found by
minimizing the cost function:

XN
i¼1

wi � qs yi � ðb0 þ b1xi;1 þ � � � þ bpxi;pÞ
� � ð3Þ

where wi is a vector of weights (between 0 and 1) given at the
observations yi of the random variable Y, and qs is the check func-
tion defined as:

qsðeÞ ¼
se; e > 0
ðs� 1Þe; e 6 0

�
ð4Þ
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Fig. 4. Example of (top) analog ensemble (AnEn), (middle) quantile regression (QR), and (bottom) persistence ensemble (PeEn) forecast PDFs for 27 September 2011. The grey
shadings correspond to the 25–75 (darker) and 5–95 (lighter) quantiles. The black and dashed lines represent the power observation and ensemble mean, respectively.
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The coefficients bp can be estimated with linear programming
techniques. In this case, as in [34], the R add-on package quantreg
has been used.

Additive models [38] are also used to account for the non-
linearity between solar power and its explanatory variables. Such
models can be expressed as follows:

y ¼ aþ f 1ðx1Þ þ f 2ðx2Þ þ � � � þ f pðxpÞ þ e ð5Þ

where the constant a and the functions f jðxjÞ are estimated from
data. It is important to underline that the estimates are non-
unique (e.g., it is possible to add a constant to one function and sub-
tracting it from another), unless restrictions are imposed on the
functions. In [38] the authors impose on each function restrictions
of having zero mean over the data. In that case, it is possible to
approximate each function using linear combination of known basis
functions of the corresponding input variable as follows:
f jðxjÞ ¼
Xnj
k¼1

bjkðxjÞhjk ð6Þ

where bjðxjÞ are the basis functions and hj are the unknown coeffi-
cients. In order to obtain unique estimates, restrictions are then
imposed on Eq. (6) and the resulting basis functions are derived.
Imposing f ið0Þ ¼ 0, then hj1 ¼ �Pnj

k¼2hjkbjkð0Þ=bj1ð0Þ. Using hj1 in
Eq. (6) results in the following expression:

f jðxjÞ ¼
Xnj
k¼2

bjkðxjÞ � bjkð0Þ
bj1ð0Þ bj1ðxjÞ

� �
hjk ð7Þ

where the nj � 1 new basis functions are defined by the term in
front of the coefficients hjk. The result is then a linear regression
model in which the estimates of a and hjk are unique.
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Examining Eq. (2) it can be seen that the model can be general-
ized to quantile regression by modeling QðsÞ as follows:

QðsÞ ¼ aðsÞ þ
Xp

j¼1

f jðxj; sÞ ¼ aðsÞ þ
Xp

j¼1

Xnk
k¼1

bjkðxjÞhjkðsÞ ð8Þ

In Eq. (8), the basis functions are constructed under appropriate
restrictions as described above.

In [34] QR is used to forecast errors of WPF but, as mentioned by
the authors, this can lead to unrealistic quantiles (i.e., a lower
quantile crossing a higher one). As suggested in [34] a possible
way to avoid such unrealistic quantiles is to forecast the power
production instead of the forecast error, which is what is per-
formed in this study and already implemented successfully for
WPF in [30]. For all the variables a cubic spline basis with 10
degrees of freedom is constructed, using no intercept; this implies
that the functions are restricted to be zero at the lower boundary
knot. The boundary knots are placed at the limits of the data, while
the inner knots are placed at equally distant quantiles of the cumu-
lative function of the individual explanatory variables. In this way
the knots result relatively closer where the observations of the
variable are denser. In the prediction phase it is then important
to use the same knots defined during the training phase, where
both the observations and the explanatory variables are available.
Since none of the bases allow for a free intercept, this is handled by
an intercept in the model. The forecast lead time is introduced as
an explanatory variable because the meteorological model accu-
racy depends on it. Similarly to what has been done for AnEn, an
optimization process is performed in order to choose the best set
of regressors among the available variables, i.e., GHI, T2M, CC, EL,
AZ and the forecast lead time (LT), keeping PV measurements as
realizations yi of the random variable Y. All the possible combina-
tions are used to compute the QR forecast over the last 60 days of
the training period and for each of them the CRPS is computed. The
lowest CRPS value resulted from the following set of regressors:
GHI, CC, EL, LT for Catania, GHI, T2M, CC, EL, AZ, LT for Milano
and GHI, CC, LT for Calabria. Those set of variables are kept
unchanged over the verification periods and are used for the
results shown hereafter.

A similar optimization is performed on the same periods in
order to define the weights vector wi. The function wi ¼ e�i=ss

(where i indicates the time distance expressed as number of hours
between the current forecast and the past forecast in the training
data set) is introduced in order to let the weights assigned to the
past observations decrease in time with a ‘‘forgetting factor” equal
to ss. Several attempts are made, with ss changing between 400 h,
and +1 (i.e., when all the weights wi are set equal to 1); the choice
of ss ¼ 800 h resulted in the minimum CRPS for all three solar
farms.

Similarly to AnEn, the solar power forecast PDF is estimated
with 20 quantile intervals from 0.0 to 1.0 with step 0.05. The same
training and test periods previously described have also been used.
The QR coefficients are updated using new available power obser-
vations every 24 h during the verification period, and then applied
on the following 0–72 h predictions. An example of QR forecast is
illustrated in Fig. 4 (middle panel, see comments in next section).

3.3. Persistence ensemble (PeEn)

The PeEn forecast is used as a baseline prediction to be com-
pared with AnEn and QR forecasts. In this work the PeEn ensemble
for each of the 72 h ahead is made of the most recent available 20
measured PV values at the same hour. This set of values can even-
tually be ranked to define a set of power quantile intervals. The
PeEn ensemble forecast can be accurate if clear sky conditions per-
sist for several consecutive days. Indeed, at the same hour of the
day similar levels of power are expected as the sun position is quite
similar.

An example of PeEn forecast is illustrated in Fig. 4 (bottom
panel). The PeEn forecast provides very similar PDFs for the three
days ahead, while both AnEn (top panel) and QR (middle panel)
PDFs change depending on the underlying meteorological condi-
tions. This results in quantile ranges wider for PeEn with respect
to AnEn and QR, which can be excessive in the clear sky conditions
observed in day 2, when a lower prediction uncertainty is
expected. Indeed, AnEn PDF becomes sharper on the second fore-
cast day, while is able to account for a wider uncertainty on the
first and the third day when cloudier situations are observed.
Also, QR is sharper than AnEn on the first and the third day when
the power variability introduced by cloudy conditions is higher.
3.4. Neural Network (NN)

A forecasting system based on NN is included to compare fore-
cast performance from a deterministic point of view. The system is
based on artificial, feed-forward NN with single hidden layer and is
applied using a dedicated package (‘‘nnet”) of R [39]. This NN has a
simple structure that connects some inputs variable with a
response variable, passing by one hidden layer of neurons, which
process the information. The authors have applied this type of
NN in [20,30].

The NN is configured using forecast lead time, GHI, CC and T2M
as input variables and measured power as the output variable. The
NN initial configuration is defined by a set of weights, which are
randomly initialized. For this reason, multiple trials are performed,
training the NN starting from a different set of random weights.
The training is performed on the same period previously defined
for the other models. The last 60 days of the training periods are
not used in the training phase but to select the best NN. For each
independent trial the root-mean-square-error (RMSE) between
the output of the NN and the measured power is computed. The
NN providing the lowest RMSE is then selected to compute the
forecasts for test period. An optimization is also made to choose
the optimal set of input variables. In all the test cases, the optimal
set is made of GHI, CC, T2M, EL and forecast lead time.
Furthermore, the choice of 4 neurons in the hidden layer provides
the best results for each test case.
4. Results

4.1. Statistical consistency

Consistency indicates whether the members of an ensemble
system are statistically indistinguishable from the observations.
If an ensemble system is statistically consistent, an observation
ranked among the corresponding ordered ensemble members is
equally likely to take any rank in the range of the whole PDF
[40]. A rank histogram can be used to assess whether the observa-
tions are equally distributed among the forecasted PDF. A perfectly
uniform rank histogram would be flat, i.e., with uniform rank prob-
ability of 1=ðnþ 1Þ [41] where n is the number of ensemble
members.

The vertical bars represent the confidence intervals [42,43] and
are calculated with a quantile function for a binomial distribution.
The confidence intervals delimit the 5–95% quantile interval of the
binomial distribution. They assess the confidence in the estimated
distance from the perfect forecast (the one lying along the horizon-
tal bar), which varies based on the available samples in each bin. E.
g., with a limited number of samples a deviation from the perfect
forecast could just occur by chance, while with an infinite number
samples would reduce the confidence interval length to 0. The
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Missing Rate Error (MRE), which is the fraction of observations
lower (higher) than the lowest (highest) ranked prediction above
or below the expected missing rate of 1=ðnþ 1Þ, is also shown.
A larger positive (negative) MRE reveals a more under dispersive
(over dispersive) ensemble. Fig. 5 shows the rank histograms for
the different forecast techniques and solar farms. Only the fore-
cast lead times when the hourly average solar elevation is greater
than 0 are considered. The AnEn shows the overall best level of
statistical consistency with the lowest values of MRE. There is a
slight tendency of underestimating the frequency of the highest
bins at Milano and Catania. Considering that for AnEn the
20-member ensemble is made of past measurements (selected
as described in Section 3.1), this means that the observed PV is
more likely to be lower than the highest ensemble members,
which could possibly indicate that the produced power decreases
with time. This decrease in power could potentially be explained
by a lower frequency maintenance of the PV panels, which would
result in a performance degradation. The latter could be a
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Fig. 5. Rank histogram for Analog Ensemble (AnEn), Quantile Regression (QR) and Pers
average solar elevation. Each row refers to a different solar plant (Catania, top, Calabria
plausible explanation considering that, differently from Calabria,
both Milano and Catania plants are not industrial facilities aiming
to optimize the energy production, and they are likely not as well
maintained. If the maintenance schedule were known, it would
be possible to correct the past observations taking into account
for the performance degradation, and likely further improve the
AnEn performance. The PeEn and QR are both under dispersive.
The PeEn is made of the most recent 20 observations that are
not able, in general, to capture the observed variability. For
QR the under dispersive behavior could be attributed to the opti-
mization process described in Section 3.2, which sets the forget-
ting factor to a relatively low value (i.e., 800 h) for the optimal
weights. While this choice leads to the best performances in term
of CRPS, on the other hand it reduces the average inter-quantile
distance (i.e., the ensemble spread). In other tests (not shown
here) with higher values of ss we have obtained better-
calibrated ensembles by the QR model but with a higher (worse)
CRPS.
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4.2. Spread-skill consistency

The ability of a probabilistic prediction to quantify its uncer-
tainty can be assessed by compiling binned-spread/skill diagrams.
In a spread/skill diagram the ensemble spread is compared to the
RMSE of the ensemble mean over small class intervals (i.e., bins)
of spread, instead of considering its overall average [44–46]. A
good correlation in the spread/skill diagram is an indication that
an ensemble system is able to forecast its own error [46]. If the
observations are indistinguishable from the predictions, i.e., the
observations and the ensemble members are samples from the
same distribution, it can be shown that the ensemble standard
deviation (i.e., the ensemble spread) and the RMSE of the ensem-
ble mean should be equal. However, if the ensemble members
and ensemble mean errors do not have a Gaussian distribution,
the spread-RMSE matching requirement is only a necessary con-
dition for spread-skill consistency. The latter is satisfied if the
two indices match at all values (i.e., the resulting trend lies on
the plot’s 1:1 diagonal). Binned-spread/skill diagrams for each
prediction system are reported in Fig. 6. Each bin has the same
number of data points, which results in bins of different width.
The QR and PeEn behavior is consistent with what is seen in
the rank histograms. There is an under estimation of the spread
that is often lower than the RMSE (i.e., the methods are always
under dispersive). The PeEn shows the largest range of forecast
errors (RMSE). The AnEn has a similar trend to PeEn and QR for
Milano, even if the spread is slightly over estimated for the bins
corresponding to the highest RMSE. For Catania and Calabria
the spread/skill relationships are generally better for AnEn, con-
sidering the confidence intervals overlap or lie very close to the
diagonal.

4.3. Continuous ranked probability score

In order to assess the quality of the two ensemble systems
without being limited by a specific threshold value, as is the case
with reliability diagrams, Brier score, or relative operating charac-
teristic (ROC) skill score, the continuous ranked probability score
(CRPS) is computed. The CRPS is the equivalent of the Brier score
integrated over all possible threshold values. In other words, it
compares a full probabilistic distribution with the observations,
where both are represented as cumulative distribution functions
(CDF) [47]. The more the PDF originating the CDF is sharp and
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Fig. 6. Binned Spread/skill plots for the three solar farms and three different forecast m
nominal power (NP); the 5–95% bootstrap confidence intervals are plotted for AnEn onl
centred on each observation, the lower the CRPS is. It is given
by the formula

CRPS ¼ 1
N

XN
i¼1

Z 1

�1
ðF f

i ðxÞ � F0
i ðxÞÞ

2
dx ð9Þ

where F f
i ðxÞ is the CDF of the probabilistic forecast and F0

i ðxÞ is the
CDF of the observation for the ith ensemble prediction/observation
pair, and N is the number of available pairs. In the literature it is
shown that the CRPS reduces to the mean absolute error (MAE)
for a deterministic forecast [48]. A lower value of the CRPS indicates
better performance, with 0 being a perfect score. The index is
expressed in the same unit as the forecasted variable.

In Fig. 7 the CRPS as a function of forecast lead time is plotted
for the three solar farms and the three probabilistic prediction
methods, normalized by both nominal power (left axis) and mean
measured power (right axis). Next to the left vertical axes the CRPS
(and its confidence interval) computed with all available lead times
(considering only the hours with a positive average solar eleva-
tion), is shown. These average CRPS values for QR and AnEn are
consistently lower than those of PeEn. When looking at CRPS com-
puted independently for each lead time, in the early morning and
late afternoon when the solar elevation is low, QR is at times worse
than PeEn and AnEn (see for instance lead time 29 for Catania and
lead time 65 for Calabria). This can be explained by the lower cor-
relation between the forecasts and the observations when the solar
elevation is low. This lower correlation affects the QR performance
more than AnEn, because in QR the regression coefficients are com-
puted considering all the data in the training data set, while in
AnEn only a few cases are selected. At Milano QR shows the lowest
total average CRPS and also the best performance during the peak
production hours. At Catania and Milano there is no statistically
significant difference between QR and AnEn as the total average
CRPS bars overlap. To analyze the relative performances of the dif-
ferent forecast systems at the different plants, the CRPS can be also
normalized with the mean measured power (MP) to account for
different climatic conditions (i.e., different MP/NP ratio). For
Catania and Calabria QR and AnEn show an average CRPS/MP of
about 15%, i.e., a similar level of accuracy in similar climatic condi-
tions. At Milano, QR and AnEn are close to 20% and 21%, respec-
tively, i.e., they exhibit a worse performance in a climate with
more cloudy days, which is expected given the reduced solar
power predictability.
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4.4. Brier skill score (reliability and resolution)

Reliability is a measure of the similarity between the forecasts
and the observations in a probabilistic system. It is not sufficient
to characterize the quality of a probabilistic forecast, though it is
an essential attribute of probabilistic predictions conditional to
resolution [49].

A probabilistic forecasting system would be perfectly reliable if,
statistically, the forecast probabilities were equal to the observed
frequencies. In other words, taking into consideration all the cases
in which the occurrence of an event is predicted with a certain
probability bin, such an event should occur with a frequency equal
to the mid-point of the probability bin [50]. Resolution measures
the forecasts’ ability to predict when an event occurs or not [51].
Probability forecasts with perfect resolution forecast 100% on occa-
sions when the event occurs and forecast 0% when the event does
not occur.
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Fig. 8. Brier skill score (BSS) of analog ensemble (AnEn) and quantile regression (QR) (wit
three different solar power plants. Next to the left axis is shown the BSS 5–95% bootstrap
hours with a positive average solar elevation. The event considered is solar power forec
An assessment of reliability and resolution can be performed
calculating the Brier score (BS) components [51,52]. The Brier score
is equivalent to RMSE for a deterministic forecast and it measures
the difference between the predicted probability of an event and
its occurrence with the formula:

BS ¼ 1
N

XN
i¼1

ðpn � onÞ2 ð10Þ

where p is the forecasted probability of a categorical event, on is
the categorical observation (1 if the event occurs, 0 if it does not
occur), and N is the total number of (pn, on) pairs. As with the
RMSE, a lower value of the Brier score implies a better perfor-
mance, with 0 being a perfect score. The Brier score can be decom-
posed in the reliability, resolution, and uncertainty components.
The uncertainty part is related to the variance of the observations
and is not an attribute of the forecasting system. The highest
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uncertainty occurs when the climatological frequency of a given
event is equal to 0.5.

Having a reference forecast (e.g., PeEn) it is then possible to cal-
culate the Brier skill score (BSS), which is given by the formula:
Fig. 9. Percentage mean absolute error normalized by nominal power (MAE/NP%, left y ax
regression (QR), Neural Network (NN) and persistence ensemble (PeEn) as function of fo
reduce clutter. Next to the left y-axis the metric confidence interval is computed by pull
BSS ¼ 1� BS
BSref

ð11Þ

where BS is the Brier score of the system to be evaluated, and BSref is
the BS of the reference forecast. The BSS measures the ability of the
is) and by mean power (MAE/MP%, right y axis) of analog ensemble (AnEn), quantile
recast lead time. Bootstrap 5–95% confidence intervals are plotted for AnEn only to
ing all the lead times together for the hours with a positive average solar elevation.
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model to issue a better probabilistic forecast than the reference.
Positive (negative) values of BSS indicate better (worse) perfor-
mances than the reference system.

Fig. 8 shows the BSS values of AnEn and QR (setting PeEn as ref-
erence) as a function of forecast lead time and for the three solar
power plants. Similarly to Fig. 5, next to the left vertical axis are
shown the BSS 5–95% bootstrap confidence intervals computed
considering all the lead times together and only the hours with a
positive average solar elevation. In Fig. 8 the event considered is
PV greater than the mean power. Given the diurnal variation of
the mean power, different thresholds are taken at each lead time.
In Fig. 8, AnEn and QR show similar performances (except at
Milano, see discussion below) and are better than PeEn, with val-
ues of BSS between 20% and 40%, except for lead times correspond-
ing to a low solar elevation (early morning and late afternoon). At
those lead times QR becomes worse than PeEn. The reason for that
can be addressed to the lack of correlation between the observa-
tions and the regressors as already discussed in Section 4.3. At
Milano and Catania the total BSS of AnEn and QR are not statisti-
cally different and are close to 20% and 15%, respectively. At
Calabria AnEn is statistically significantly better than QR with val-
ues close to 35% vs. 25%.

4.5. Evaluation of deterministic predictions

In this section a quantitative assessment of the deterministic
prediction quality (also referred to as spot power forecasts) is pre-
sented, given that they are still used by several end users for a
range of applications. A straightforward way to obtain a determin-
istic prediction from a probabilistic one is to take, for every issued
forecasted PDF, its mean or median.

A common verification framework, as suggested for WPF by
[53], should be used to evaluate a deterministic forecast. The mean
absolute error is used to evaluate the three different deterministic
forecast, which can be expressed as follows:

MAE ¼ 1
N

XN
i¼1

joi � f ij ð12Þ

where oi is the ith observed value and f i the ith forecasted value.
MAE allows measuring the average error magnitude in the fore-
casts. As a selection criteria of forecast-observation pairs in Eq. (8)
we kept only the hours with a positive average solar elevation that
are relevant for PV forecasting. The median of every issued forecast
PDF is used as the f i because it provides lower MAE than the mean
value of the PDF [54].

The RMSE is alternative common verification index for deter-
ministic predictions, which completely defines the error distribu-
tion under the assumption that errors are unbiased and follows a
normal distribution. However, RMSE is a quadratic score index,
that gives higher weights to larger forecast errors. The MAE, being
a linear score, gives on average the same weight. Considering that
the penalties paid by the producers are usually proportional to the
imbalances (i.e., the differences between forecasted and produced
power) the MAE choice should be preferable to evaluate the PV
forecast performances. In Fig. 9 MAE values are normalized by
NP (left vertical axis) and reported as a percentage for every lead
time separately and over all the lead times together (as in Fig. 7).
The MAE is also normalized by MP (right vertical axis) during the
test period. The AnEn and QR show a total MAE/NP statistically sig-
nificantly lower than PeEn with values close to 6–7% for all three
sites. The AnEn is slightly better than QR at Catania but slightly
worse at Milano, while they have similar total MAE/NP at
Calabria. The QR achieves better accuracy than AnEn at Milano dur-
ing the central hours of the first two forecast days, while again QR
performance degrades at early morning and late afternoon. NN
shows slightly worse results than both AnEn and QR at Catania
and Calabria, exhibiting higher errors during the central hours of
each forecast day, while at Milano it performs similarly to AnEn.
The different climatology of the three solar farms affects the per-
formances of QR and AnEn particularly in terms of MAE/MP. In fact,
at Catania and Calabria, MAE/MP total average values are under
20% while at Milano they are around 25%. Therefore, the impact
of more cloudy weather and a polluted environment in terms of
predictability in the 1–72 h range can be quantified for this data
set to be 7–10% of MAE/MP. A higher impact on this index may
occur when dealing with locations with weather more cloudy
and higher power variability than Milano.
5. Conclusions

This study evaluates the analog ensemble (AnEn) method,
which was originally designed for meteorological probabilistic
forecasting and already tested for wind power forecasting, for solar
power probabilistic and deterministic forecasting, and for wind
resource assessment applications. The test is carried out using
measured hourly power data from three solar farms located in
Italy. The AnEn best configuration is found through an iterative
optimization process over a period of 60 days of the training data
set carried out independently for each solar farm. A 3-h time win-
dow and 20 analogs are also chosen as parameters of the AnEn con-
figuration. The AnEn performance is compared to other methods
such as quantile regression (QR) and persistence ensemble
(PeEn). A comparison with a Neural Network (NN) method is also
performed to assess forecast performance from a deterministic
point of view. These methods have the advantage of not requiring
an irradiance-to-power conversion function. In fact, only the mete-
orological forecasted variables global horizontal irradiance (GHI),
cloud cover (CC), 2 m temperature (T2M), solar azimuth (AZ), solar
elevation (EL) and photovoltaic power (PV) measurements are used
for this application. Using an irradiance-to-power conversion func-
tion (that would be specific for each solar farm) would require the
additional availability of GHI observations time series, to post-
process the GHI by a correction procedure before applying the con-
version function. An optimal choice of predictors of the QR weights
function is also found on the same 60-day periods used for the
AnEn optimization. NN is also optimized by choosing its best set
of initial parameters on the same 60-day period as above, before
being applied over the test period. The PeEn is a 20-member
ensemble including the most recent 20 observations available at
the same forecast lead time.

The AnEn shows in general the best level of statistical consis-
tency compared to QR and PeEn, which are both under dispersive,
as shown by the rank histograms. The PeEn being made of the last
20 observations is not able to capture the whole observations vari-
ability, while QR results are under-dispersive because of the rela-
tively short forgetting factor chosen in the weighting function to
optimize continuous ranked probability score (CRPS).

The QR and AnEn exhibit similar results in terms of CRPS and
mean absolute error (MAE) when computed overall lead times.
The AnEn is slightly better at Catania and slightly worse at
Milano than QR, and both methods are better than PeEn with sta-
tistically significant differences. Looking at specific lead times, QR
tends to lose accuracy when the solar elevation is low (i.e., early
morning and late afternoon) when the regressors (i.e., the meteo-
rological model forecasts) and the observed variables (i.e., power)
are less correlated. The different climatology at the three solar
farms affects the performances of QR and AnEn particularly in term
of MAE normalized by mean power (MAE/MP). At Catania and
Calabria MAE/MP total average values are under 20% while at
Milano they are around 25%. There is not a significant impact on
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predictability with respect to the nominal power. In fact, the
Calabria nominal power (NP) is around one thousand times greater
than Catania but the MAE/MP of AnEn and QR results are similar, at
about 18–19% on both plants. NN shows slightly worse results than
AnEn and QR during the central hours of each forecast day at both
Catania and Calabria, while at Milano its performance is similar to
AnEn. This points out the applicability and, in general, the appre-
ciable performance of probabilistic forecast systems when used
to deliver also a single-valued, short-term forecast, which appears
comparable with that of a common deterministic forecasting sys-
tem based on NN. The Brier skill score (BSS) is then used to test
AnEn and QR skill against PeEn on predicting two events: PV power
greater than the mean power and lower than 25% of the mean
power, with the mean power computed separately for each lead
time. The correct prediction of the second event is particularly
important for transmission system operators (TSO) that, to main-
tain grid stability, must find other sources of power production
to compensate for the lower solar power availability. Both QR
and AnEn have a better BSS than PeEn during the central hours
of the day, but they (in particular QR) lose skill in the early morn-
ing and late afternoon. The AnEn has a statistically significant
higher total BSS than QR at Catania and Calabria plants, while at
Milano they are statistically equivalent.

It is important to note that the AnEn algorithm described in this
paper requires minimal computational resources. To process a sin-
gle three day-ahead AnEn forecast, a fraction of a second is suffi-
cient on a common personal computer CPU. The most substantial
computational effort is carried out to obtain the deterministic
meteorological forecast used to generate the time series input to
AnEn.

The impact of different climatologies on AnEn performance is
also assessed. However, future work should expand the tests pre-
sented here to other locations spanning a wider range of climato-
logical conditions, to assess the generality of the results reported
in this study.
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