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Using Non-authoritative Sources During

Emergencies in Urban Areas

Emily Schnebele, Christopher Oxendine, Guido Cervone, Celso M. Ferreira,

and Nigel Waters

Abstract During emergencies in urban areas, it is paramount to assess damage

to people, property, and environment in order to coordinate relief operations and

evacuations. Remote sensing has become the de facto standard for observing

the Earth and its environment through the use of air-, space-, and ground-based

sensors. These sensors collect massive amounts of dynamic and geographically

distributed spatiotemporal data daily and are often used for disaster assessment,

relief, and mitigation. However, despite the quantity of big data available, gaps

are often present due to the specific limitations of the instruments or their carrier

platforms. This chapter presents a novel approach to filling these gaps by using
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non-authoritative data including social media, news, tweets, and mobile phone

data. Specifically, two applications are presented for transportation infrastructure

assessment and emergency evacuation.

Keywords Infrastructure assessment • Evacuation • Remote sensing • Inundation

modeling • Social media • Geospatial analysis • Big data

14.1 Introduction

Never in the history of humankind have we known so much about our planet. Never

in the history of humankind have we had such easy access to data. Never in the

history of humankind has our civilization been so much at risk.

Hazards pose a constant threat to the development and sustainment of our infras-

tructure and our society. Hazards can be natural, anthropogenic, or technological.

They are, respectively, events that naturally occur, events resulting from human

activities or accidents, or the catastrophic collapse of infrastructure, such as roads,

communication networks, or power grids, which are needed for our society to

function.

A single catastrophic event can claim thousands of lives; cause billions of dollars

of damage; trigger an economic depression that might directly or indirectly affect

the entire world; destroy natural landmarks; cause tsunamis, floods, and landslides;

render a large territory uninhabitable; and destabilize the military and political

balance in a region (Cutter 1993; Alexander 2002; Wisner et al. 2004). Such

potential catastrophic consequences are due to the emergence of megacities and

the proliferation of nuclear power plants and nuclear waste storage facilities, high

dams, and other facilities whose destruction poses an unacceptable risk of global

reach (Freudenburg et al. 2008; Casti 2012). Thus, the study of natural hazards and

of the processes that govern their occurrence has become a fundamental challenge

for the survival of our civilization.

Advances in our ability to observe the Earth and its environment through the

use of air-, space-, and ground-based sensors has led to the collection of massive

amounts of dynamic and geographically distributed spatiotemporal data. Numerical

models are initialized with these high-resolution observations to forecast the future

or to simulate the past, generating simulations that can be several orders of

magnitude larger than the initial observations. Remote sensing data from air- and

space-borne platforms have also become the de facto standard for providing high-

resolution information for the assessment, relief, and mitigation of damaged areas

during and after emergencies caused by natural, human-made, and technological

disasters (Jensen and Cowen 1999; Voigt et al. 2007). However, due to limitations

in orbital revisit time, sensor characteristics, and the presence of clouds, there may

be gaps in these remote sensing data.

This chapter presents applications for data collected from non-authoritative

sources to fill the gaps in remote sensing data during disasters and emergencies.

Non-authoritative sources include data volunteered by citizens (also known as

volunteered geographic information or VGI (Goodchild 2007; Sui and Goodchild
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14 Using Non-authoritative Sources During Emergencies 339

2011; Sui et al. 2013)) or collected for purposes other than disaster assessment,

such as traffic cameras or mobile phone locations. This general class of data,

often voluntarily contributed and made available, can consist of pictures, videos,

sounds, text messages, etc. Due to the spread of the Internet to mobile devices, an

unprecedented and massive amount of data have become available, often geolocated

and often in real time. These sources provide a large, rapidly changing, dynamic

dataset that not only complements remote sensing observations but also adds an

additional, subjective view of how people perceive and react to hazards.

Although non-authoritative data are often published without scientific intent,

and usually carry little scientific merit, it is still possible to mine mission critical

information. For example, volunteered photos and videos about natural hazards

have emerged as a data source during crises and hazardous events to derive local

meteorological information, capture and record the physical features of an event,

and identify and document flood height (De Longueville et al. 2009; Hyvärinen

and Saltikoff 2010; Poser and Dransch 2010). During Hurricane Sandy, geolocated

pictures and videos searchable through Google provided early emergency response

with ground view information.

Mining these massive amounts of “big data,” it is possible to reconstruct a

spatiotemporal human terrain that provides knowledge when remote sensing data

are unavailable or incomplete. Additionally, non-authoritative data may provide

unique knowledge that is not possible to acquire solely from remote sensing

instruments.

This chapter discusses the fusion of remote sensing and non-authoritative sources

to assess road infrastructure and plan evacuations in an urban environment during

emergencies. Two specific applications are discussed:

1. An assessment of New York City transportation infrastructure during and

after Hurricane Sandy using crowdsourced remote sensing imagery, numerical

models, social media, and ground observations

2. Identification of evacuation routes during emergencies in New York City using

traffic information and mobile phone data

14.2 Transportation Infrastructure Assessment

The first application presented in this chapter is a damage assessment of roads

during and after Hurricane Sandy in New York City. Multiple sources of data

are combined including aerial images contributed by the Civil Air Patrol (CAP),

numerical inundation models, VGI harvested from social media, and ground

observations.

The utilization of data from multiple sources can help provide a more complete

description of a phenomenon. For example, data fusion is often employed with

remote sensing data to combine information of varying spatial, temporal, and

spectral resolutions as well as to reduce uncertainties associated from using a

single source (Zhang 2010). The fused data then provides new or better information

than would be available from a single source (Pohl and Van Genderen 1998).
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The incorporation of multiple data sources or methods for improved performance

or increased accuracy is not limited to the field of remote sensing. Boosting, a

common machine learning technique, has been shown to be an effective method

for generating accurate prediction rules by combining rough, or less than accurate,

algorithms together (Freund et al. 1999). While the individual algorithms may be

singularly weak, their combination can result in a strong learner. Furthermore,

redundancies in observations provide an increase in the confidence of observations

or estimates, while data from multiple sources can provide information when they

might not do so if used in isolation.

Figure 14.1 shows the stacked layer approach used to fuse heterogeneous data at

different spatial, temporal, and radiometric resolutions. The data are first processed

in a GIS environment by resampling them at the highest resolution available using

Sh
ore

lin
e

DEM

Inundation Model

Aerial

Satellite

High Resolution Data

High Resolution Cells

Land

Fig. 14.1 Stacked layer approach used in the methodology. Data comes in different formats and

with different resolutions
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14 Using Non-authoritative Sources During Emergencies 341

spatial statistical algorithms (Zhang et al. 2014). For example, points which identify

flooding (e.g., photos) are plotted, georeferenced, and then smoothed using a kernel

interpolation to create a GIS layer of estimated flood extent. This is a task performed

for each data source, resulting in multiple, individual flood extent layers. The

analysis is then performed on the fused layers by applying statistical or machine

learning algorithms to classify the data and identify anomalies.

Fusing data from multiple sources leads to an improved damage estimation and

an increased understanding of the sequence of events that leads to transportation

infrastructure failure. In this example, non-authoritative data are used in two

different scenarios:

1. Damage assessment during an event

2. Damage assessment after the event

It is assumed that ground truth data might not be available. The novelty of

this study is the development of a methodology that takes advantage of “citizens

as sensors” (Goodchild 2007) and of various other data, including remote sensing

and numerical models, not necessarily designed to be used during emergencies to

improve damage assessment. These non-authoritative or nontraditional sources are

used to create additional layers which augment traditional sources when they may

be lacking or incomplete. The result is shown in the bottom layer, where a flood

hazard map is generated. The resulting flood hazard map is then paired with a high-

resolution road network to create a road damage map.

14.2.1 Data Sources

14.2.1.1 Remote Sensing Data

High-resolution remote sensing data are routinely used to assess damage during and

after hazards, in both urban and rural areas. Two or more images are acquired for an

area showing the differences before and after the hazard.

The Civil Air Patrol, the civilian branch of the US Air Force, was tasked with

collecting aerial photos of the US East Coast following the impact of Hurricane

Sandy in October 2012. Within days of the storm making landfall, hundreds of

missions were flown by volunteers from Cape Cod, MA, to Cape May, NJ. From

these missions, thousands of aerial photos of the coastline were generated, including

those documenting heavily flooded areas.

14.2.1.2 Numerical Surge Model

Recent improvements in understanding the physics of storm surge combined

with rapid increases in High Performance Computing (HPC) power have led to
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the development of physics-based, high-resolution numerical models capable of

predicting and simulating hurricane storm surge with reasonable accuracy in coastal

areas.

The Sea, Lake, and Overland Surge from Hurricane model (SLOSH) (Jelesni-

anski et al. 1992) developed by the National Weather Service (NWS) has been

extensively used by decision makers to predict storm surge inundation for planning

and emergency management, and it is currently the NWS official operational fore-

cast model for storm surge. Several other numerical models have been developed

over the years to calculate water levels and currents resulting from hurricane storm

surges along the continental shelves and coasts.

Among others are the Advanced Circulation (ADCIRC) model developed by

Luettich and Westerink (2004), the fully nonlinear Finite Volume Coastal Ocean

Model (FVCOM) developed by Chen et al. (2003), and the Semi-implicit Eulerian-

Lagrangian Finite Element (SELFE) model developed by Zhang and Baptista

(2008). Recently, the Coastal and Ocean Modeling Testbed (COMT) compared

the models’ prediction skills (Kerr et al. 2013) and concluded that they all, except

SLOSH, generated similar predictions for Hurricane Ike in 2008 and Hurricane Rita

in 2005, thus demonstrating the maturity level of storm surge model development.

For this study, a lower-resolution/faster computational time numerical mesh was

used to simulate the Hurricane Sandy storm surge in order to maintain similarity

to models used in operational forecasts (e.g., Advanced Flooding Guidance System

[ASGS]) to represent information that would be available to decision makers before

a hurricane landfall. The coupled version of the two-dimensional depth integrated

version of the Advanced Circulation (ADCIRC) model and the SWAN wave model

(Dietrich et al. 2011) was used to simulate hurricane storm surge along the coast.

The ADCIRC model (Luettich and Westerink 2004) is a finite element, shallow

water model that solves for water levels and currents at a range of scales and is

widely used for storm surge modeling (e.g., Ferreira et al. 2014). This version of

the program solves the Generalized Wave Continuity Equation (GWCE) and the

vertically integrated momentum equations. SWAN is a third-generation spectral

wave model that computes random, short crested wind-generated waves and wave

transformation in the near shore and inland waters (Booij et al. 1999). For storm

surge simulation, ADCIRC is forced by the wind and pressure fields and the wave

radiation stress resulting from the wave model. Tides and river inflow can also be

added as a boundary.

The East Coast Mesh (ECM2001) presented by Mukai et al. (2002) was utilized

with approximately 250,000 nodes and a resolution of approximately 1.2 km along

the study area. ADCIRC allows for the use of an unstructured finite element mesh

with variable resolution along the model domain. The hurricane surge model was

forced by wind and pressure fields developed by a parametric asymmetric wind

model (Mattocks and Forbes 2008) that computes wind stress, average wind speed,

and direction inside the Planetary Boundary Layer (PBL) based on the National
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14 Using Non-authoritative Sources During Emergencies 343

Hurricane Center (NHC) Advisory Archive for Hurricane Sandy (NOAA 2013a)

track data and meteorological conditions (e.g., central pressure, forward speed, and

radius to maximum wind).

To simulate the Hurricane Sandy storm surge, a simulation was run for October

18th until the 28th including tides (tidal potential components M2, S2, N2, K2,

K1, O1, and Q1) but neglecting river inflows. The simulations were performed

under the HPC environment provided by the Extreme Science and Engineering

Discovery Environment (XSEDE) supported by the National Science Foundation

(NSF). Results were recorded every 15 min around the study region at every model

node and at NOAA Tides and Currents stations (NOAA 2013b). The model results

generally overestimate the measured water levels most likely due to the differences

between the hypothetical asymmetrical wind and pressure fields and the actual storm

conditions.

The spatial flood levels were calculated using a Digital Elevation Model (DEM)

with a 1 arc-second resolution from the National Elevation Dataset (NED) for the

study region (USGS 2013). The maximum water levels for each model node were

extracted for the 29th and the 30th of November and converted to the NAVD88

vertical datum. A spline interpolation with tension was applied to create a maximum

water level surface for the study region according to the methodology suggested by

Berenbrok et al. (2009). Finally, the water levels were subtracted from the DEM to

calculate the spatial flooded extent (Fig. 14.2).

Fig. 14.2 Modeled surge extent for October 30 at 1:00pm
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14.2.1.3 Non-authoritative Data

Non-authoritative data are not produced or distributed from necessarily trusted

sources and often lack any assertion of verification or accuracy. However, regard-

less of varying levels of certainty or trustworthiness, non-authoritative sources

can provide valuable, real-time, on-the-ground information during disasters when

traditional sources are unavailable, lacking, or slow to respond. For example,

following the Fukushima nuclear disaster in 2011, the Japanese public supplemented

authoritative government sensors with user-generated content. Individuals through-

out the country bought personal Geiger counters and contributed to a crowdsourced

Geigermap.1

Crowdsourced Damage Assessment

Remote sensing data (photos) acquired by the Civil Air Patrol were assessed for

damage by thousands of people across the world. The photos were placed on a

Hurricane Sandy Google Crisis Map website (Fig. 14.3) for the public to assess

visible damage through a crowdsourcing portal supported by MapMill. This yielded

a large damage assessment dataset generated from crowdsourced, non-authoritative,

nontraditional sources. The photos were also made available online through a

Federal Emergency Management Agency (FEMA) website for residents to search

by street address to see what, if any, damage their homes may have sustained.

The crowdsourced damage assessments of photos captured between October 31

and November 11, 2012 for the area from 33N to 26N latitude and 90W to 84W

longitude were downloaded directly from MapMill. Because of the large volume

of photos and the scale of the domain, the photos were aggregated into a 500 m

grid structure. The value for each grid point is a function of the number of images

present in each grid and their average crowdsourced damage assessment. As a result,

each grid has a value from 1 to 10, with 1 representing no damage and 10 severe

damage/flooding.

Volunteered Geographic Information (VGI)

VGI was ascertained from YouTube videos which documented flooding and damage

in New York City following Hurricane Sandy. The data were collected from a

Hurricane Sandy Google Earth website where YouTube videos were supplied by

Storyful. YouTube, a video-sharing website, is utilized by millions of people for the

sharing of videos covering a wide range of topics and experiences. Through this

site the public voluntarily shares information, often documenting damage resulting

from natural hazards. The videos were provided with geolocated information and

were visually assessed by the authors. The small number of videos (n D 15) did

1http://japan.failedrobot.com/
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Fig. 14.3 Crowdsourced assessments for the Civil Air Patrol data. Damage assessment:

red D high, yellow D medium, green D none

not require any crowdsourcing or automated assessment. Furthermore, it is shown

in Schnebele and Cervone (2013) that even a small number of properly located VGI

data can help improve flood assessment. Each location corresponding to a video

point was assigned a value of 10 (severe damage/flooding).

Photos (n D 25) which documented flooding within the study domain were

downloaded using the Google search engine and were also visually assessed by

the authors. The point locations were georeferenced to create a GIS layer of flooded

locations. Each point was assigned a value of 10 (severe damage/flooding).

Twitter, a popular social networking site, is often utilized by the public to

share information about their daily lives through micro-blogging. Arizona State

University’s TweetTracker provided Twitter data for this project (Kumar et al. 2011).

Tweets generated in the New York City area extending from 40.92N to 40.54N

latitude and 73.75W to 74.13W longitude from October 26 to November 3, 2012

containing the word “flood” were used to provide a temporal framework.
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14.2.1.4 Authoritative Data

Authoritative data are collected, produced, and managed by professional cartogra-

phers, geographers, and/or government agencies. Information which comes from

these official, authoritative persons or agencies carries a certain level of trust which

affords them credibility (Flanagin and Metzger 2008; Goodchild and Glennon

2010). Examples of authoritative data may include remote sensing imagery collected

and calibrated by NASA or stream flow information collected from USGS river

gauges. These are our traditional sources of data and information during disasters

and emergencies.

Federal Emergency Management Agency (FEMA)

The FEMA Modeling Task Force (MOTF) consists of experts in hazard assessment

and the modeling of hazard losses. Following Hurricane Sandy, FEMA MOTF used

field-verified high water marks and storm surge sensor data to create storm surge

maps for the US East Coast. For this work, a FEMA MOTF storm surge shapefile for

New York City was downloaded from FEMA’s GeoPlatform website. The surge map

was the finalized version (dated February 14, 2013) with a 1 m horizontal resolution

and a New York State Plane coordinate system (Fig. 14.4 (right)).

Water depth data were also collected at inundated New York City public schools

by FEMA MOTF. The water depth at schools was ascertained from water marks

taken from on-site structures (Fig. 14.4 (left)). A GIS layer was created from

georeferenced point locations of the schools with measured water depths.

United States Geological Survey (USGS)

Water height collected by the USGS storm-tide monitoring provides an additional

source of authoritative ground data. These official measurements were taken at

Fig. 14.4 FEMA water depth measured at public schools (left) and official flood inundation map

(right)
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different locations throughout the domain. Water height modeled for each point is

interpolated using a spline function to create a water height surface. A DEM with

a 1 arc-second resolution from the National Elevation Dataset (NED) is subtracted

from the water height surface to create a water depth layer (USGS 2013).

United States Census Bureau

A 2012 TIGER/line® shapefile of road networks for the New York City area was

downloaded from the US Census Bureau and was georeferenced to New York State

Plane coordinates.

14.2.2 Damage Assessment During Emergencies

After individual data layers are generated from available remote sensing and

authoritative and non-authoritative data, they are integrated together using an

artificial neural network machine learning algorithm. Artificial neural networks are

nonlinear data modeling tools for discovering patterns in data from a series of

inputs (Atkinson and Tatnall 1997). The network consists of interconnected nodes

comprising an input layer, a hidden layer, and an output layer (Fig. 14.5). In this

research, the nodes of the input layer consist of the flood identification layers created

during preprocessing, and the output layer is a flood assessment surface. The hidden

layer nodes, or neurons, are the computational units of the network. The neuron

receives the inputs and produces responses. Benediktsson et al. (1990) defines the

simplest formal model of the neuron, where the output value is approximated by the

function

Input #1

Input #2

Input #3

Input #4

Output

Hidden

layer

Input

layer

Output

layer

Fig. 14.5 Depiction of an artificial neural network
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where K is a constant, � is a nonlinear function, wj are the weights assigned by the

network, and � is a threshold. The network takes inputs x and produces a response

oi from the output units i . The outputs are either oi D 1 if the neuron i is active

for the input x or oi D 0 if it is inactive. The network learns the weights through

iterative training and will converge when there is no change from one iteration to

the next.

The trained network can then be used for the classification of a new dataset. A

feedforward artificial neural network was implemented for this work using the R

statistical package (Venables and Ripley 2002).

The goal is to classify each pixel as being flooded or not flooded. The neural

network classifier is trained using the data layers from October 29 and tested on

the October 30 layers. Figure 14.6 illustrates the training of the neural network

classifier (blue lines) using available sources of remote sensing and authoritative

and non-authoritative data from October 29. The data are first preprocessed (e.g.,

georeferenced and interpolated) to create individual flood extent estimations which

are fed into the neural network to create a classifier. The operational step uses this

classifier along with data collected from the subsequent day, October 30. These data

(green lines) are preprocessed and then passed through the trained classifier to create

a flood extent map.

Fig. 14.6 Illustration of the application of a neural network classifier. The classifier is created

from training data (blue lines) and is then used to create a flood extent map by passing data from a

subsequent day (green lines) through the classifier
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Fig. 14.7 Classification of flooding (high, medium, low flood severity/damage) in New York using

an artificial neural network

Because the inundated schools, USGS, and Civil Air Patrol data represented

maximum flood extent, it was possible to generate only one layer from each dataset;

therefore, these data were used for both days. The initial training and testing datasets

produced results indicating flooding along the coastlines of New York City with the

greatest damage identified in lower Manhattan and southern edges of Brooklyn and

Queens (Fig. 14.7).

14.2.3 Damage Assessment After Emergencies

After an emergency, remote sensing and volunteered data can be employed to

provide a damage assessment. In this particular work, the official FEMA flood

map is color coded to show not only which areas have been flooded but also which

areas have been most affected. In addition, the damage assessment surface is then

used to identify roads which may be compromised or may require site inspections

(Schnebele et al. 2013).

Crowdsourced data (CAP photos) and VGI (YouTube videos), which are il-

lustrated in Fig. 14.8b, are fused together using a kriging interpolation. Kriging

allows for spatial correlation between values (i.e., locations/severity of flooding)
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Fig. 14.8 Storm surge extent generated by FEMA and the locations of Civil Air Patrol photos and

geolocated videos (a and b). Flood damage assessment generated from non-authoritative data and

the subsequent classification of potential road damages (c and d)

to be considered and is often used with Earth science data (Oliver and Webster

1990; Olea and Olea 1999; Waters 2009). Ordinary kriging generated a strong inter-

polation model. Cross-validation statistics yielded a standardized mean prediction

error of 0.0008 and a standardized root-mean-squared prediction error of 0.9967.

Figure 14.8c illustrates the damage assessment, with values ranging from 1 (no

damage) to 10 (severe damage), created from the interpolated surface which is

clipped to the boundaries of the FEMA surge extent (Fig. 14.8a) demonstrating how

non-authoritative sources can be used to add value to the FEMA map.

Ground information in the form of geolocated videos (Fig. 14.9) enhances the

non-authoritative dataset by providing flood information not conveyed in the CAP

photos. As illustrated in Fig. 14.8b, the locations of the videos (green triangles)

did not coincide with the locations of photos rated as medium/severe damage

(larger orange circles, values 7–10). Reasons for this disparity may include flooding

captured on video had receded before the Civil Air Patrol flights or were captured at

night or flooding may have occurred in areas which were not in a flight path or were

unable to be seen from aerial platforms (i.e., flooding in tunnels, under overpasses).

By using multiple data sources, flood or damage details not captured by one source

can be provided by another.
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Fig. 14.9 Example of YouTube video documenting flooding

Overall, there is a very good agreement between the flood extent from FEMA

and the assessment generated with the proposed methodology. Figure 14.10 pro-

vides examples of agreement between photos identifying flooding/damage and

the FEMA-generated flood extent, while Fig. 14.11 includes examples where the

locations of flooding or damage did not agree between the Civil Air Patrol and the

FEMA data. These areas were located along coastal edges, and therefore a lack of

spatial precision in the data is most likely the cause of the discrepancies.

Sources of error in non-authoritative data, such as incorrect information (false

positive/negative) or improper geolocation, needed to be considered. Incorrect

information can be mitigated by including visually verified photos/videos and the

application of multiple sources. Crowdsourcing, in particular, can increase accuracy

and enhance information reliability compared to single-source observations (Giles

2005). Geolocation errors can be reduced with automation.

Sparse data or data skewed in favor of densely populated or landmark areas

makes the use of non-authoritative data sources especially challenging. Increasing

data volume and integrating authoritative data into the methodology can yield

increased confidence and include underrepresented areas. Table 14.1 compares and

summarizes some features of each type of data. Although non-authoritative data

can provide timely, local information often in large volume, they are often viewed

with uncertainty. Conversely, the verification and authentication of authoritative data

yield trusted results at the cost of time.
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Fig. 14.10 Agreement between Civil Air Patrol photos and FEMA evaluation for flooded (a and

b) not flooded (c and d)

14.2.3.1 Road Damage Map

In Fig. 14.8c, the damage assessment is limited to the FEMA-generated surge

extent for the sake of comparison. For the classification of road damage, the non-

authoritative assessment is not limited by the FEMA boundary. The fusion of the

non-authoritative data predicted flooding and damage outside the FEMA surge

boundary, so the full damage assessment was utilized for the road classification.

A road network from the TIGER/line® shapefile was layered over the damage

assessment surface. Road damage was then classified based on the underlying

damage assessment (Fig. 14.8d).

By using the damage assessment surface along with a high-resolution road

network layer, roads which may have severe damage can be identified at the street

level. This allows authorities to prioritize site inspections, task additional aerial

data collection, or identify routes which may be compromised. The identification

of potential damage to transportation infrastructure is also crucial to the planning of

evacuation routes during and after emergencies.
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Fig. 14.11 Disagreement between Civil Air Patrol photos and FEMA evaluation for flooded (a

and b) not flooded (c and d)

Table 14.1 Comparison

between non-authoritative

and authoritative data

Non-authoritative data Authoritative data

Benefits Volume Reliable

Real time Verified

Citizens as sensors Authenticated

Challenges Sampling bias Slow

Unconfirmed Unavailable

14.2.3.2 Temporal Assessment

For this study, Twitter data were used to provide a temporal rather than spatial

assessment. Although tweets were geolocated using TweetTracker, uncertainty in

their location did not allow for a study at a street resolution. However, they provide

precise temporal information that can be used to understand the progression of the

surge extent over time. To understand the temporal progression is crucial during and

after flood events and is very hard to understand using remote sensing instruments,

due to their inherent carrier limitations. Twitter data can effectively be used to
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Fig. 14.12 Progression of tweets mentioning the word “flood” in the New York City area

overcome this limitation because of its high temporal resolution. For example, the

peak in the number of tweets containing the word “flood” occurs on October 29 and

30, 2012 immediately before and during landfall of Hurricane Sandy in New York

City the night of October 29th (Fig. 14.12). Having an indication of event timing

can be a very effective aid for emergency managers and response initiatives.

14.3 Evacuations During Emergencies

Emergency evacuations during natural and anthropogenic disasters are time sen-

sitive and require detailed spatiotemporal information for emergency planners to

mitigate evacuee risk. One of the primary goals of emergency personnel is to

reduce the likelihood of injury and death for citizens within an evacuation zone.

First responders are entrusted with providing accurate evacuation information to the

public, especially to special populations (e.g., children, elderly, and disabled people

are at increased risk during evacuations). Fusing non-authoritative and authoritative

information provides increased situational awareness for crisis response personnel.

This information enables them to better understand where incidents are occurring,

how many people are at risk, and where to allocate resources. The ability to

minimize response time is critical to minimizing loss of life and limb.

This section discusses the importance and challenges of evacuations, mobile

phone data and its collection, issues of privacy with mobile phone data, and how

the use of mobile phone data in evacuations can enhance situational awareness of

emergency response planners.

Emergency response personnel can use non-authoritative data, such as near real-

time mobile location data, to increase their situational awareness and to redirect

resources as needed within their jurisdiction. Figure 14.13 shows a subset of
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Fig. 14.13 Emergency shelters and example of mobile phones geolocated in New York City.

Emergency response personnel can utilize mobile phone data to answer unknown questions. For

example, where are citizens located within the evacuation zone, or are there areas where additional

police forces should be positioned to reduce congestion?

mobile phone data (over 15,000 phones) collected from OpenCellID in 2011 for

NYC as well as the locations of five emergency shelters (OpenCellID 2011). In

this example, mobile phone locations provide enhanced situational awareness of

spatial and temporal population fluctuations, unlike census data which is a static

representation of data collected during the last census. Using mobile phone data, as

shown in Fig. 14.13, emergency response personnel can determine evacuation routes

to the closest shelters, determine where to position police officers to reroute traffic to

reduce congestion, or estimate how many citizens are at risk in an evacuation zone.

14.3.1 Importance of Evacuations

Emergency evacuations often occur with limited or no planning. Notifying the cor-

rect individuals based on their location and the type of risk is key to minimizing loss
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of life and limb. Emergency response personnel manage and execute evacuations.

They collect information from various sources and share this information with first

responders and other emergency response personnel through a common operational

picture.

Much of the information collected and required during a crisis have a spatial

component. Analyzing the area of impact for a crisis event provides emergency

responders with a spatial footprint of the affected area. Further spatial analysis may

provide estimated damage costs and an estimation of the number of people affected

and their location. Emergency planners use such information to evaluate where to

allocate resources in order to minimize further loss of life, limb, or property.

14.3.2 Challenges of Evacuations

At the onset of an evacuation, emergency planners have many questions that are

inherently spatial: How many people were affected by the incident, and where

are they located? Where are the available emergency shelters? What is the status

of the transportation network including public transportation? What is the status

and location of available emergency personnel and equipment? Much of this

information is spatial in nature; however, it may be found in disparate databases or

systems. Quickly finding answers to these questions can save lives; however, limited

knowledge can lead to increased risk to evacuees and response personnel.

One key challenge in evacuations is determining where the people are located.

Determining the location of individuals and the risks they may be exposed to

is of the utmost importance for planning an emergency response. Populations

fluctuate during the day as people travel to work, school, recreational activities,

sporting/cultural events, etc. Their location is constantly changing and not always

predictable. Currently, the allocation of resources is based on the expertise of first

responders, information that has been collected about the situation, and situational

awareness of emergency planners.

14.3.3 Mobile Phone Data

During emergencies, traditional mobile phones provide voice and SMS services;

however, smartphones also provide enhanced services through mobile applications.

Some of these applications include social media networks, notification services,

mapping, navigation, e-mail, Internet access, photo and video capture, and crowd-

sourcing applications. Individuals use these to improve their situational awareness

and share information with others who may be affected by the crisis.

Mobile phone companies collect information from individual mobile phones

in the United States and internationally. Policies for how long the data is stored

vary by mobile provider. Mobile phone data that are collected may include date,
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time, latitude, longitude, identification number of the cell phone, and signal

strength. After these data are collected, they may be aggregated for additional

analysis, cleansed of personally identifiable information, and sold for use in other

applications, such as navigation, traffic services, or business development.

For example, mobile phone data are often used to improve navigation by

monitoring congestion along interstates and highways. The average speed of mobile

phones is compared with the speed limit along a section of highway to determine

which routes are flowing normally and which are congested. Older models of

mobile phones determine their location by triangulating between mobile phone

towers, whereas most modern phones now use GPS to determine their location.

This information provides individuals with the ability to find the shortest or quickest

route to their destination using mobile phone data. Further analysis of mobile phones

that are traveling along highways provides a method to estimate the number of

vehicles traveling along a route at different time periods. This information is useful

for transportation departments for traffic planning, for businesses for determining

locations for new franchises, and for numerous other applications.

14.3.4 Issues of Privacy with Mobile Location Data

Although the collection of near real-time mobile location data to support emergency

response greatly increases situational awareness of response personnel and planners;

citizens are often concerned with the government or individuals using such informa-

tion to invade their privacy, track their movement, or in an investigation following

an attack.

Personally identifiable information (PII) includes information such as name,

social security number, phone number, home address, etc. PII is not needed when

collecting real-time mobile location data to support emergency response. Protective

measures such as stripping PII from data before mobile phone companies share it

with government officials during emergencies provide a measure of privacy. Another

measure for protecting individual privacy is through the aggregation of data. In

metropolitan areas, mobile phone location data could be aggregated to the nearest

road intersections with an estimate of the number of people near that intersection.

These data would reduce privacy concerns while also providing invaluable data to

emergency response personnel. In suburban or rural areas, data could be assigned

by census block or tract, or the spatial and temporal accuracy of the data could

be reduced to reduce privacy concerns while still providing increased awareness to

response personnel.

With the increasing use of mobile phone data in the private sector to support

business development, government policies must be developed to address the

application of mobile phone data in large-scale emergencies. Policies on the

application of mobile phone location data in emergency response are limited to

nonexistent. Although citizens are concerned with privacy, they are also concerned

with an accurate and efficient response by emergency response personnel.
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14.3.5 Application of Mobile Phone Data in Evacuations

Fusing mobile phone data with existing data sources provides increased situational

awareness and fills existing gaps in other data. During large-scale dynamic events,

especially in high population density areas, the common operational picture is

further supplemented with mobile phone data.

One major challenge for emergency response personnel and planners is to

determine where people are located at various times of the day. This challenge

becomes even more complicated with limited communications or a complete loss

of communications. During emergencies with limited to no communications, it is

possible for emergency personnel to use archived data to estimate the density of

populations. Previously collected mobile data that accounts for diurnal population

change and population change during major events, such as sporting events, parades,

festivals, etc., provide response personnel with prediction models to use in their

planning. This information can prove very important in international response to

disasters where population data are often unreliable.

Providing assistance at the right location is often a challenge for emergency

response personnel. Often limited crowdsourced or social media data are available

in developing countries; however, mobile phones are much more prevalent and

provide a source of data on movements of people within the country. Information

on the movement of individuals within a country enables the government and

nongovernment organizations to prioritize their response based on spatial and

temporal data.

As smartphones become more prominent in developing counties, it is necessary

to devote increased efforts to increase awareness of mobile applications and their

contributions to citizens. These tools provide citizens and emergency personnel with

increased information and damage estimates on their response areas.

Finally, mobile phones provide an opportunity for evacuees to provide data

to emergency personnel through text messaging, social media, or phone calls.

Although there may be a loss of power, mobile phones usually work on battery

power for several hours after an incident. This provides an alternate means of

communication and enhances situational awareness when other communication

methods are limited or nonexistent.

Mobile phones provide emergency personnel with enhanced situational aware-

ness; however, new policies for protecting the privacy of individuals with respect to

mobile phone data are necessary to limit concerns for PII. Standards for collection of

data and who can handle data are necessary to protect citizens. Additional research is

needed to evaluate how mobile phone data is represented in Geographic Information

Systems (GIS). This research should address and refine database storage methods

and analysis of mobile phone data.
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14.4 Conclusions

During disasters and emergencies in urban areas, timely and accurate information

of road networks, infrastructure conditions, and locations of citizens is crucial.

But this information can be limited, incomplete, lengthy to acquire, or out of

date. Although not necessarily created or posted with the intent of being used

for scientific research, non-authoritative data can be harvested during disasters

and emergencies to provide timely, on-the-ground information. Although often

viewed with uncertainty because of concerns related to, for example, producer

anonymity and lack of authoritative verification, these data often provide relevant

information that may be difficult for authorities to collect. Non-authoritative sources

also provide an additional layer of subjective information which can indicate the

severity of potentially dangerous events, as well as how citizens are reacting to the

developing danger or coping with damage resulting from a disaster. By presenting

varied applications, such as damage assessments and emergency evacuations, the

practicality of non-authoritative sources and how they can add value to official data

is demonstrated. It is hoped that one day this research will help save lives.
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