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Characterizing and Predicting Traffic Accidents in Extreme Weather
Environments

Richard M. Medina
University of Utah

Guido Cervone
Pennsylvania State University

Nigel M. Waters
University of Calgary

Motorists are vulnerable to extreme weather events, which are likely to be exacerbated by climate change throughout the world.
Traffic accidents are conceptualized in this article as the result of a systemic failure that includes human, vehicular, and
environmental factors. The snowstorm and concurrent accidents that occurred in the Northeastern United States on 26 January
2011 are used as a case study. Traffic accident data for Fairfax County, Virginia, are supplemented with Doppler radar and
additional weather data to characterize the spatiotemporal patterns of the accidents resulting from this major snowstorm event.
A kernel density smoothing method is implemented to identify and predict patterns of accident locations within this urban area
over time. The predictive capability of this model increases over time with increasing accidents. Models such as these can be
used by emergency responders to identify, plan for, and mitigate areas that are more susceptible to increased risk resulting from
extreme weather events. Key Words: extreme weather events, geographic information systems, predictive model, traffic
accidents.

汽车驾驶者对于极端气候事件而言相当脆弱，而极端气候事件则可能因全世界的气候变迁而加剧。本文将交通事故概念化

为包含人类、交通工具与环境因素的系统性失败之结果。本文运用美国东北部于2011年一月二十六号的暴风雪与同时发生

的意外事故作为案例研究。维吉尼亚州费尔法克斯郡的交通事故数据，以都普勒雷达和额外的气象数据补充之，以描绘此

次重大暴风雪事件所导致的事故之时空模型特徵。本研究实施核密度平滑方法，以指认并预测这个城市区域中，随着时间

改变的事件地点模式。此一模型的预测能力，随着时间中事故的增加而增强。紧急状况的回应者，可运用诸如此类的模

型，指认、规划并缓解对于极端气候事件导致的风险增加更为敏感的区域。 关键词: 极端气候事件，地理信息系统，预测

模型，交通事故。

Los motoristas son vulnerables a eventos atmosf�ericos extremos, los cuales son susceptibles de exacerbaci�on por el cambio
clim�atico global. En este artículo los accidentes de tr�ansito se conceptualizan como resultado de una falla sist�emica que incluye
factores humanos, vehiculares y ambientales. La tormenta de nieve y los accidentes concurrentes que ocurrieron en el Nordeste
de los Estados Unidos el 26 de enero de 2011 se utilizan como estudio de caso. Los datos de accidentes de tr�ansito del Condado
de Fairfax, en Virginia, se complementaron con radar Doppler y datos meteorol�ogicos adicionales para caracterizar los patrones
espaciotemporales de los accidentes resultantes de este evento meteorol�ogico mayor. Se implement�o un m�etodo de suavizaci�on
de la densidad del n�ucleo para identificar y predecir patrones de localizaciones de accidentes a trav�es del tiempo dentro de esta
�area urbana. La capacidad predictiva de este modelo aumenta con el paso del tiempo al incrementarse los accidentes. Modelos de
esta clase pueden usarse por los servicios de respuesta a emergencias para identificar, planear y atenuar efectos en �areas que sean
m�as susceptibles a incrementar el riesgo resultante de eventos meteorol�ogicos extremos. Palabras clave: eventos
meteorol�ogicos extremos, sistemas de informaci�on geogr�afica, modelo predictivo, accidentes de tr�ansito.

W eather-related traffic accidents contribute a
large proportion of the total traffic accidents in

the United States, and with the potential for increased
weather variability and populations to urban areas in
the future, efforts to better understand and mitigate
these hazards are of great importance. The U.S.
Department of Transportation estimates that 23 per-
cent of annual traffic accidents are weather related.

This amounts to about 1.312 million of the estimated
total (about 5.870 million). In the ten-year period
between 2002 and 2012, the annual average for inju-
ries was 480,338 and for deaths was 6,253 (U.S.
Department of Transportation 2015). A 2014 report
prepared for the U.S. Department of Transportation,
Federal Highway Administration outlined “key gaps
in the integration of climate change considerations
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into transportation engineering” (Hyman et al. 2014,
1). Based on the assessments made in this report, stud-
ies such as this one can assist transportation planning
efforts, namely, with translating climate and accident
data to “terms that resonate with transportation practi-
tioners” (Hyman et al. 2014, 5), evaluating various
costs and benefits of potential and implemented infra-
structural or environmental changes, and decision
making. Informed mitigation processes through the
understanding of spatiotemporal accident patterns and
resulting risk can help reduce the number of casualties
by implementing more effective planning designs
(Nunn and Newby 2015).
Weather can negatively affect travel and transporta-

tion by increasing hazard potential, especially in the
case of extreme weather events (Stamos et al. 2015).
This is, of course, a spatiotemporal problem (Whitelegg
1987). Consider that the risk of traffic accidents for
commuters can be worse during rush hours, in regions
that experience more or higher impact hazardous
events, and at times of the year when seasonal variation
can lead to greater hazard. The relative increase in com-
muting hazard is due to direct effects of the events (e.g.,
unstable road conditions, poor visibility), infrastructural
limitations (e.g., poor lighting, unsafe roads, inadequate
cleanup), poor vehicle performance (e.g., bad brakes,
two-wheel drive, or inappropriate tires in snow condi-
tions), and counteradaptive changes in human behavior
(e.g., speeding, bad decisions resulting from inexperi-
ence; S. P. Satterthwaite 1976;Golob andRecker 2001).
As areas are affected by extreme weather, poor infra-

structural and environmental conditions increase the
risk for commuters. This includes insufficient lighting,
dangerous roads (e.g., slopes, potholes, debris), and
latent, insufficient, or lacking response (e.g., late,
poor, or no snow clearing during and after a storm).
Commuters can minimize the hazardous effects of
extreme weather events by reducing speeds, altering
routes, or avoiding the commute completely, but these
behaviors are dependent on knowledge of the situa-
tion, previous experience, reaction times, and person-
ality characteristics (Legree et al. 2003). These
behaviors can also lead to increased hazard if poor or
inexperienced decisions are made on the road.
The negative effects of storms are not uniform over

urban areas. Social, physical, and infrastructural vul-
nerabilities cause some regions to be more hazardous
than others. Although traffic accident analyses using
network-based statistics are popular (see Yamada and
Thill 2007; Eckley and Curtin 2013), in some cases it
might be more beneficial to focus on traffic systems
that include the environment, interactions, and related
infrastructure. Urban areas are systems within which
hazard risk is spatially and temporally variable, as is
the potential for disaster (Jarup 2000). Negative effects
to parts of an urban system can lead to cascading fail-
ures that can result in diminished accessibility by
emergency responders. In this way, vulnerability to
traffic accidents is dependent on more than the road
alone (Whitelegg 1987; Nunn and Newby 2015).

This research focuses on the spatiotemporal pat-
terns of extreme weather events and potential vulner-
abilities of densely populated urban areas to motorists.
It examines a 2011 storm that greatly affected the
northeastern United States and resulted in excessive
traffic accidents in Fairfax County, a busy part of the
Washington, DC, metro area. The objective of this
research is to identify changing accident patterns over
space and time and design a method to predict, with
reasonable accuracy, regions of greatest hazard impact
on commuters. This is possible as traffic accidents are
in part a function of (1) spatially dependent infrastruc-
ture failures and environmental conditions and (2)
human behavior that is affected by perceptions of risk,
which vary during extreme weather events. The first
step in anticipating where traffic accidents will occur
and reducing risk is understanding where weaknesses
and vulnerabilities exist within urban systems.
As we write, the Washington, DC, urban region is

forecast to have another major snowstorm of more than
a foot of snow. The National Weather Service (2016)
reported that since 1884 such catastrophic snowstorms
have occurred sixteen times in the Washington, DC,
area, an average of one every eight years. Climate
change, however, might increase their frequency.

Weather and Traffic Accidents

Three main systemic processes will likely increase
human vulnerabilities to weather-based traffic accidents
in the future. First, climate change is expected to increase
instances of extreme weather events. This will result in
more hazardous days throughout the year inmany areas.
These events are on the rise in many parts of the world
and include increased precipitation, storm intensity, and
flooding (Seneviratne et al. 2012; Walsh et al. 2014), all
of which greatly affect commuter safety. Second, there is
a global rural-to-urban migration trend. Developing
regions are projected to see a 100 percent increase in
urban dwellers between 2010 and 2050, and developed
regions are projected to see a 22 percent increase
(United Nations 2011). Finally, aging or crumbling
infrastructures can lead to more hazardous road condi-
tions, especially in the face of extreme weather events.
There have been many studies of the causes and

effects of traffic accidents. Some of these studies have
attempted to predict traffic accidents or correlate them
with human behavior. Among the behavioral factors
investigated are social deviance (Lawton et al. 1997;
Meadows, Stradling, and Lawson 1998), personality
(S€umer 2003), sleep patterns and obesity (Ter�an-Santos
et al. 1999; Stoohs et al. 1994), and cell phone use
(Strayer, Drews, and Johnston 2003; Strayer, Drews,
and Crouch 2006). Other studies focus on infrastruc-
tural characteristics, such as speed and speed limit
effects on accidents (Aljanahi, Rhodes, and Metcalfe
1999), lighting conditions (Golob and Recker 2003),
and geometric design and pavement conditions (Karlaf-
tis 2002). The relationships between environmental
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variables and traffic accidents have been studied from
different perspectives, including focuses on wildlife
effects (Putmam 1997; Alexander and Waters 2014)
and weather factors, such as visibility. There is ample
evidence that weather factors, particularly precipita-
tion, can lead to traffic accidents (see Campbell 1971;
Codling 1974; S. P. Satterthwaite 1976; Sherretz and
Farhar 1978; Smith 1982; Veith 1983; Brotsky and
Hakkert 1988; Palutikof 1991; Andreescu and Frost
1998). Few studies focus on specific hazardous weather
events and the traffic accidents they facilitate. Those
rare studies, including Edwards (1996), Amundsen and
Ranes (2000), and Hijar et al. (2000), would have
benefited from computational approaches, such as
those discussed in this article. Given present dangers
and impending climate changes, weather event–based
transportation hazards should be a critical concern.

The 26 January 2011 Winter Storm
Affecting the Northeast United States

On Wednesday, 26 January 2011, the Northeast
United States experienced a storm in which the entire
area from Washington, DC, to Pennsylvania and
southern New York was eventually inundated with
snow. This area includes many regions of high-density
population and increased social vulnerabilities to natu-
ral hazards (Cutter and Finch 2008). Figure 1 illus-
trates the extent of this storm in a NASA MODIS
satellite image from 27 January 2011.
Ground Doppler weather radar data were used

to determine the spatial distribution of the storm.
Figure 2 shows four frames from the radar data:
13h00, 15h00, 17h00, and 19h00. This illustrates the
quick movement of the storm in a northeast direction.

The greatest amount of precipitation (shown in dark
red) is seen roughly about the area of Point Lookout
on the Chesapeake Bay at 15h00. This also marks the
time when the largest precipitation downfall was
observed over the study area, Fairfax County, Virginia.
Due to the timing and intensity of the 2011 storm,

there was a high impact on commuters in theWashing-
ton, DC, metropolitan area. The large number of acci-
dents can be partially attributed to the sizable amount of
snowfall, its accumulation due to the cold temperatures,
and the timing of the storm, which coincided with the
afternoon rush hour, leading to poor commuting condi-
tions throughout the region. Furthermore, in January
in this area the sun sets early, so that by the beginning of
the storm, visibility was reduced in many areas. In cases
where large storms are anticipated, the number of acci-
dents might not be as high, as sufficient time is given for
work and school cancelations andmotorists are deterred
frommaking their usual trips (de Freitas 1975; S. P. Sat-
terthwaite 1976). This storm was unexpected. Many
motorists were left stranded and others abandoned their
vehicles on the roads to seek shelter. The western sub-
urbs of Washington, DC, including Fairfax County,
were some of the most affected areas. Approximately
400,000 homes were without power in theWashington,
DC, area and 18.5 cm of snow accumulated at Dulles
International Airport, west of Washington, DC. The
precipitation totals were lower than other storms in
2009 and 2010 but, as mentioned previously, the timing
and intensity of this stormmade it one of themost detri-
mental in the region’s history (National Oceanic and
Atmospheric Administration 2011).
Figure 3 shows the precipitation (bars) and accumu-

lated precipitation (line) for the Washington, DC, met-
ropolitan area as a function of time for 26 January 2011,

Figure 1 NASAMODIS Image from 10:55 am EST, 27 January 2011.
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categorized by rain, light snow, and heavy snow. The
heavy snow peak occurred at approximately 15h00 (3:00
pm), at the beginning of the afternoon rush hour. Dur-
ing this peak time, heavy snowfall was measured to be
over 1.5 cm per hour and accumulation increased drasti-
cally in the area.

Although a high number of accidents were reported
in Fairfax County, the area in and surrounding Wash-
ington, DC, received a modest amount of snow,
whereas areas in New York received as much as
48 cm. Part of the reason that a comparably small
amount of snow caused so much distress is due to the
lack of familiarity of Washington, DC, motorists with
snowy conditions and also the paucity of infrastructure
(e.g., snowplows) necessary to quickly mitigate the sit-
uation with snow removal.
During the storm, local police departments were

unprepared to answer the massive amount of calls
from disabled or injured motorists. The police report
written for this event includes overall statistics for the
period of the storm (e.g., number of calls, police, fire,
and emergency medical service [EMS] dispatches, and
radio transmissions) between the police headquarters

Figure 3 Precipitation profiles for the 26 January 2011 storm.

Table 1 Number of calls, dispatches, and transmissions
directly related to the storm

Type of communication Number

911 calls 1,558
Admin line calls 1,316
Police dispatched 1,318
Fire-rescue dispatches 523
Emergency medical service dispatches 110
Radio transmissions 21,985

Figure 2 Ground Doppler weather radar visualizations of the 2011 Washington, DC, metropolitan area storm. (Color

figure available online.)
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and the emergency responders. A summary of these
statistics is given in Table 1.
Over the eight-hour period of the storm, there was

an approximate 317 percent increase in telephone
calls, a 68 percent increase in computer-aided dispatch
(CAD) events, and a 140 percent increase in radio
transmissions. Increases in communication of this
magnitude can lead to cascading failures in urban area
response systems (Comfort 2006).
There was no timely suitable warning for this event

with respect to its effects in the Washington, DC,
metro area. The potential for predicting storm inten-
sity varies from region to region because of environ-
mental uncertainties. In the greater Washington, DC,
area uncertainties are high due to the common conver-
gence of cold, dry Arctic and warm, moist maritime air
masses. This leads to difficulties in predicting extreme
weather events. There have been many occasions
when extreme weather preparations have been either
overtly excessive or completely inadequate in response
to specific events in this area. For example, in Febru-
ary 2013 a major storm was forecast in the area, caus-
ing schools and businesses to close, but the storm
passed with little to no impact.

Data and Methods

Weather Data

Weather data were retrieved from Weather Under-
ground (The Weather Channel 2015) using the meteo-
rological station located at Dulles Airport in Fairfax
County. The measurements available include the pre-
cipitation rate and accumulated precipitation, wind
speed and direction, air and surface temperature, pres-
sure, and dew point. Only a single station is available
in Fairfax County, so ground Doppler radar data are
used to address the spatial distribution of precipitation,
not to quantify the amount of precipitation but to
assess which areas were affected most. In addition,
Doppler radar data are also used to determine the tra-
jectory of the storm and which areas were affected first.

GIS Data and Processing

The geographic information systems (GIS) data used
for this study include roads, speed limits, and zoning
for Fairfax County, which were acquired from the
Fairfax County government online.1 Public infrastruc-
tural data such as these are available from many local
government offices. This ensures the possible repeat-
ability of this type of study. The data are rasterized
such that they are represented in 100 £ 100 m cells
where the top speed limit and majority of zoning
within each cell determine their values. The entire
county of Fairfax was used as a study area, but it is
important to note that an area in the center of the
county, Fairfax City, is excluded, as it is an indepen-
dent city (shown in Figure 4).

Accident Data

Accident data were obtained through a Freedom of Infor-
mation Act request to the Fairfax County Police Depart-
ment for all traffic accident dispatches from 00hr00/12:00
am, 25 January 2011 to 15hr00/3:00 pm, 27 January 2011.
The data contain information for 1,016 traffic accidents,
categorized as minor (TRAFDMI), intermediate
(TRAFHZ), and severe (ACCIPP) depending on the
number and type of injuries and damage, as discussed pre-
viously. Each accident is associated with a specific date
and time, the street address or intersection where it
occurred, its severity category, and optional remarks. The
accident geolocation was generated using the Google
Application Programming Interface, automatically identi-
fying the specific longitude and latitude corresponding to
the street address or intersection filed in the police report.
A visual inspection of the geolocated results is performed
by overlaying all accidents on Google Earth maps and,
furthermore, by verifying accidents further than 10 m
from a road and all clusters of events that occurred within
less than thirty minutes at the same intersection or
address. To combine the accident data with the rasterized
GIS data, all accidents closest to each 100 £ 100 m cell
centroid become properties of those specific cells. Thus,
the entire resolution for all data in the study is 100 £
100m.

Spatiotemporal Descriptives and a Predictive Model

The goal is to analyze the spatiotemporal distribution
of the accidents and urban environmental interactions
associated with a major storm event and to develop a
predictive model to forecast areas where accidents are
more likely to occur. This study begins with visual
depictions of descriptive statistics to characterize the
extreme weather event–based accidents. This includes
graphing the number of accidents in the area over
time and evaluating urban patterns for accidents.
To develop a predictive model of accidents over

time, a smoothing of the point data is performed using
a kernel estimator, where K is the kernel function and
h is the bandwidth.

f^ xð ÞD 1
nh

X n
iD 1

K
x¡ xi

h

� �
:

Here the bandwidth used is defined by Silverman’s
rule of thumb (Silverman 1986) with Scott’s (1992)
factor of 1.06.

hD 1:06An¡ 1=5;

where A D min(standard deviation, interquartile
range/1.34).
At discrete relative time steps (i.e., the time required

for the county to aggregate n accidents), the function f
is computed and used as a predictor for the regions
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where accidents are more likely to occur. The smooth-
ing is performed in two dimensions, spatial (longitude
and latitude) and at discrete accident time steps (200
accidents, 300 accidents, etc.). Thus, the predictive
model is based on both the location and temporal
sequence of the accidents. The smoothing is per-
formed with a memory of all accidents occurring in
sequence to the current time because of the relatively
short time domain (two days) and relatively high num-
ber of accidents. For longer time domains (e.g., span-
ning several days) it is advised to forget the locations
of the oldest accidents and thus constrain the predic-
tion to the areas that were most affected last, so that
the model can more easily detect changing patterns.

Traffic Accident Patterns in Fairfax County
During the 2011 Storm

The bar graph in Figure 5 illustrates the number of
accidents as a function of time. Each bar corresponds
to a one-hour period. The peak is reached between
20h00 on 26 January 2011 and 04h00 on the following
day. It is important to remember, however, that the
data do not report when accidents occurred but when
a first responder was dispatched or was sent to

investigate, so there is an inevitable lag. Several of the
accidents reported late at night or in the early morning
might have occurred at any time during a period of
several hours. It is assumed that the accident record on
25 January 2011 (Wednesday) is representative of nor-
mal accident rates for a typical work day.
Figure 6 shows the temporal distribution of acci-

dents in Fairfax County by severity before, after, and
during the storm. The legend lists three categories of
accident severity levels—injuries involved (ACCIPP),
traffic hazards (TRAFHZ), and disabled motorists/
incapacitated vehicles (TRAFDMI) or severe, inter-
mediate, and minor, respectively. The peak effects of
the storm on motorists in Fairfax County are easy to
approximate (occurring at about 15hr00/3:00 pm).
The most severe accidents (ACCIPP) dipped and
spiked at the beginning of the storm, and the least
severe (TRAFDMI) accidents had the largest spike.
The spike in intermediately severe accidents
(TRAFHZ) began about the same time as the other
two categories, but spiked later. Their increased trend
ended about the same time as the intermediately
severe accidents (TRAFDMI). It was expected that the
most hazardous accidents would occur much less fre-
quently than the less hazardous ones.

Figure 4 Fairfax County and City in Northern Virginia.
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Figures 7 and 8 show the speed limits and zoning
for the streets where most accidents occurred. These
figures illustrate the transition of accidents on the drive
home during rush hour. There is a clear pattern in
which accidents began occurring on roads with higher
speed limits (35–45 mph), but during the peak of the
storm, accidents occurred roughly on all roads, ranging
from those with slower speed limits (<25 mph) to the
higher speed limits (>45 mph). The large majority of
accidents throughout the storm were occurring in
residential areas, and accidents increased over time for
regions of no zoning. The designation no zoning in this
data set refers to areas in which the zoning field is left
blank and includes freeways and other major roads
throughout the county. Accidents within commercial
zones did not amount to a large enough sample to be
shown, but those accidents occurring in the no zoning
category could well be surrounded by commercial or
other zones.

Predicting Extreme Weather Event–Driven
Traffic Accidents

A kernel density analysis was performed to determine
the areas of increased likelihood of accidents. Figure 9
illustrates this progressive kernel smoothing method
and predictive model. The top three graphics were
computed using 100 (Figure 9A), 300 (Figure 9B),
and 500 (Figure 9C) accident time steps, the regions
of accident occurrence changing substantially. In the
bottom three images, realized with 700 (Figure 9D),
900 (Figure 9E), and 1,000 (Figure 9F) accidents, the
relative locations remain constant, indicating cluster-
ing of areas likely to experience accidents. Approxi-
mate locations of accidents were less likely to be
predicted correctly at the beginning of the storm due
to the distribution of accidents. Toward the end of the
storm, accident locations became much more predict-
able, where they are clustered along major roads and
highly populated residential neighborhoods. The
regions that evolve into high accident areas over time
might be attractors to accidents within the urban sys-
tem characterized by their potential for hazard.
Figure 10 shows the final accident data smoothing

superimposed over a map of Fairfax and surrounding
counties in northern Virginia. The majority of the acci-
dents occurred in densely populated areas on the eastern
side of the county along the rim of the Beltway, includ-
ing McLean, Falls Church, and Annandale. The other
two areas of higher accident activity can be observed on
the western side of the county corresponding to Center-
ville, Chantilly, and Reston, which also represent
densely populated residential areas. Interestingly, several
of the accidents are located nearbymajorMetro stops.

Figure 6 Temporal distribution of accidents by severity

during the 26–27 January 2011 Washington, DC, storm.

Note: ACCIPP D injuries involved; TRAFDMI D disabled

motorists/incapacitated vehicles; TRAFHZD traffic hazards.

Figure 5 Number of accidents as a function of time for 25–27 January 2011.
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The predictive model is based on the previous ker-
nel density smoothing function. Results of accuracy
for prediction are shown in Figure 11, where the dot-
ted red line delineates Fairfax County, Virginia. The
model estimates where accidents are going to occur
based on previous occurrences. After approximately
fifty accidents, the general locations of half of the
future accidents can be reasonably predicted, and after
200 accidents, the predictive accuracy quickly
approaches 100 percent in an asymptotic relationship.
The model’s ability to correctly predict the location

of future accidents is consistent with the findings that
specific locations, governed by their road type, speed

limit, and zoning are governing variables. Over the
period of the study there was no spatial change in
meteorology or precipitation patterns that would have
skewed the distribution of the accidents. In this study,
the hazard can be considered static, as the snow
affected the entire region equally. The model can be
easily extended to take into account spatial variation of
the snow over time.

Conclusions

This study characterizes traffic accident behavior in a
densely populated urban system and provides a

Figure 8 Zoning and accidents during the 26 January 2011 storm. (Color figure available online.)

Figure 7 Speed limits (mph) and accidents during the 26 January 2011 storm. (Color figure available online.)
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Figure 9 Predictive model of accident likelihood in the Fairfax County urbanized area.

Figure 10 Kernel density estimates for all 1,016 accidents.
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methodology to identify the most vulnerable regions of
this system with respect to extreme weather-related traf-
fic accidents. Given accident data, studies such as this
can help planners pinpoint areas that require attention
to reduce accidents and can aid emergency responders
in quickly understanding and adapting to the emerging
patterns in accident behavior. In this study, accident
patterns did shift early. After the fiftieth accident the
locations of the remaining majority of future accidents
were predictable by the model, and the predictability
increased as more accidents occurred.
Increased vulnerabilities for motorists in the future

can be offset by a stabilization of weather and climate
(e.g., reduction of potential impact from climate
change), less dependence on personal automobile
transportation in urban areas (e.g., transit-oriented
development; Ewing and Cervero 2001), and the
redistribution of monetary and other resources to
urban infrastructures (Jarvis 2005). It is important to
consider that some urban systems might have the abil-
ity to adapt to changing climate and demographics.
The ability to do so is located in political and engi-
neering arenas (D. Satterthwaite 2008). Monetary and
planning resources could be directed to helping mini-
mize the effects of weather on infrastructure and
motorists. For example, closure of offices, more effec-
tive street lighting, consideration of speed limits,
advancements in urban planning for new areas, and
road conditions can all be implemented in areas
affected by weather and commuting hazards. Future
trends might see many more people working from
home (i.e., telecommuting), which would also reduce
commuting vulnerabilities. This will only reduce
urban hazards, however, not eliminate them. Waiting
to act in anticipation of these offsetting factors could
be dangerous. Models that identify and forecast loca-
tions and times of relatively more dangerous urban
areas have the potential to save lives.
There were obvious patterns of accidents during this

2011 extreme weather event in the Washington, DC,
metro area. Although we do not want to assume that this
is also the case for other urban areas experiencing extreme
weather throughout the country and the world, it is likely.
The patterns, areas, and hot spots identified are only

relevant to the snow event in Fairfax County. This meth-
odology can be applied to other areas under similar cir-
cumstances, but the specific findings here can only be
applied to Fairfax County, Virginia. Each urban area
might have its own accident pattern signature that, once
known, can help planners build safer cities.With growing
populations in urban areas, increased numbers of extreme
weather events, and crumbling infrastructures in the
United States, there will likely be increases in the number
of accidents, their severity, or both. The goal should be to
reduce this by building safer infrastructure and environ-
ment, lowering first responder response times, and
increasing preparation andmitigation efforts. It is possible
that with real-time data (e.g., all accidents reported at the
time of response or before to a central office for analysis)
emergency responder offices could use a method such as
this one to anticipate where areas of higher accident activ-
ity will be located, given that the system has had enough
time to evolve to its equilibrium.

Note

1These data can be accessed at http://www.fairfaxcounty.gov/
maps/.
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