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University Park, PA, USA; bSchool of Computing, University of Portsmouth, Portsmouth, UK; cResearch
Application Laboratory, National Center for Atmospheric Research, Boulder, CO, USA; dEcology and the
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Abstract
A genetic algorithm is paired with a Lagrangian puff atmospheric
model to reconstruct the source characteristics of an atmospheric
release. Observed meteorological and ground concentration mea-
surements from the real-world Dipole Pride controlled release
experiment are used to test the methodology. A sensitivity study
is performed to quantify the relative contribution of the number
and location of sensor measurements by progressively removing
them. Additionally, the importance of themeteorologicalmeasure-
ments is tested by progressively removing surface observations
and vertical profiles. It is shown that the source term reconstruction
can occur also with limited meteorological observations. The pro-
posed general methodology can be applied to reconstruct the
characteristics of an unknown atmospheric release given limited
ground and meteorological observations.

Introduction

Atmospheric Transport and Dispersion (AT&D) models predict the fate of the
contaminant after it is released in the atmosphere and determine the air quality
factors that have an impact on health, such as the distribution of contaminant
concentration, peak concentrations, dosage, and deposition (Allen et al. 2007b;
Cervone and Franzese 2011; Cervone et al. 2010a; Cervone et al. 2010b; Franzese
2003). Several factors affect the dispersion of the contaminants, including the
source characteristics, the surrounding topography, and the local
micrometeorology.

Source characterization for airborne contaminants is an important criterion to
perform air quality analysis. The aim of source characterization is to discover the
locations, and strengths and size of one or more sources. Once the origin is
identified, releases from the source may be mitigated or, at the very least, modeled
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to predict their environmental impact. Currently, the technique available for
characterizing contaminant sources combine forward-predicting AT&D and
backward-looking models (Allen et al. 2007a). The approach presented in this
paper couples a forward dispersion model with a genetic algorithm (GA).

Several popular artificial intelligence algorithms use Bayesian inference com-
bined with stochastic sampling (e.g., Chow, Kosovic´, and Chan 2006; Delle
Monache et al. 2008; Gelman et al. 2003; Johannesson, Hanley, and Nitao 2004;
Senocak et al. 2008). Another approach based on evolutionary computation has
also been suggested and tested (e.g., Allen et al. 2007a; Cervone and Franzese
2010b; Haupt, Young, and Allen 2007). Evolutionary computation algorithms
(of which GAs are one of the main paradigms, in addition to evolutionary
strategy (ES), genetic programming and evolutionary programming) are itera-
tive stochastic methods that evolve in parallel a set of potential solutions
(individuals) based on a fitness function. The solutions are encoded as vectors
of numbers (binary, integer, or real), which can include a number of source
characteristics such as its geometry, size, location, and emission rate. Each
solution is evaluated according to an objective function (often referred to as
fitness function, cost function, or error function), which is, in general, calculated
as the difference between the concentration field simulated by the dispersion
model from a generated source, and the real observations. The evolutionary
process consists of selecting one or more candidate individuals whose vector
values are modified to minimize the fitness function. A selection process is used
to determine which of the new solutions survive into the next generation.

This characteristic suits well with the source detection problem, where real-
valued attributes are most common. GA and ES converge (De Jong 2008): lately is
very common now to encounter GA operating on real-valued parameters such as
the continuous parameters illustrated in Haupt (2005); Haupt, Young, and Allen
(2007); Allen et al. (2007b) and Long, Haupt, and Young (2010), as well as ES with
parallel search streams and even crossover operator (e.g., De Jong 2008).

For example, a GA with continuous parameter was used in the context of a
source allocation exercise (Haupt 2005); soil water characteristic curve modeling
in unsaturated soils (Ahangar-Asr, Johari, and Javadi 2012); volcanic source
inversion (Tiampo et al. 2004); coupled with a Gaussian plume model in a source
detection and modeling problem using synthetic data as receptor data (Allen et al.
2007b; Haupt, Young, and Allen 2007); and to assess the sensitivity of a source
detectionmethod to the number of sensors (Long, Haupt, and Young 2010). In all
the mentioned applications, the ES achieved good results, demonstrating its
suitability as optimization technique. An alternative methodology of the evolu-
tionary algorithm approach was proposed by Cervone et al. (2010b) and Lattner
and Cervone (2012), where new candidate solutions were created through a
process guided by machine learning, rather than the canonical Darwinian opera-
tors of mutation and crossover.
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The goal of this work is to perform a sensitivity study on the role of
meteorological observations and ground concentration with respect to the
reconstruction of the source. Real-world data from the Dipole Pride experiment
are used, and several tests are performed to determine how much of the
meteorological observations and ground concentration measurements are
required for an accurate reconstruction of the source characteristics.

Specifically, the GA is used to test and validate two major problems. The first
problem is to understand the relative contribution of the number and location of
the observed concentration. This sensitivity study consists of utilizing a subset of all
the data available, and determining the smallest set of concentrations that are
needed for an adequate source reconstruction. The second problem is to under-
stand how much meteorological data are needed for an accurate reconstruction.
This involves removing from the computation the meteorological data and the
vertical profile.

Data and models

Dipole pride data

The Dipole Pride field experiments (DP26) were conducted in November of
1996 at Yucca Flat (37 N, 116 W), at the Nevada Test Site, Nevada. The main
goal was to validate transport and dispersion models; more details about the
experiments are provided in Watson et al. (1998); Biltoft (1998).

The Dipole Pride experiments consisted in a series of instantaneous releases
of sulfur hexafluoride (SF6). Seventeen different field tests were performed
under different atmospheric conditions. In this work, the data collected for
experiment number 4 are used. This experiment consisted in a sequence of two
consecutive releases under similar atmospheric conditions. Figure 1 shows the
test domain used for the experiment, the source location, the three rows of
receptors, the weather stations, and the vertical profile.

Each row of receptors contains 30 measurements locations (1–30, 31–60, and
61–90). The temporal resolution of the observations is 15 minutes. Additionally,
five high temporal resolution (3 seconds) receptors were located along the
second row of measurements. These data were not used in the experiments.

Chang et al. (2003a) used the DP26 data experiments to validate various
dispersion models, including Second-order Closure Integrated Puff model
(SCIPUFF), used in this work. They discovered that significant errors occurred
when the simulated puff missed the receptors, probably caused by wind
interpolation.

Continuous surface meteorological observations at 15-minute interval were
collected over the domain of the experiment at eight different locations. The
measurements include wind vectors, temperature, humidity, and dew point.
Additionally, a vertical profile was collected at the beginning of each experiment
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at a location roughly located in the center of the domain (shown with a triangle in
Figure 1).

SCIPUFF

The T&D model used in this study is the SCIPUFF, a Lagrangian puff dispersion
model that uses a set of Gaussian puffs to represent an arbitrary, three dimen-
sional, time-dependent concentration field Sykes, Lewellen, and Parker (1984);
Sykes and Gabruk (1997). SCIPUFF takes as input terrain information (elevation
and cover), meteorological data such as wind direction and speed, temperature,
humidity and precipitation (surface and vertical profiles if available), and the
emission source information.

SCIPUFF can simulate both instantaneous releases (e.g., an explosion) and
continuous releases (e.g., smoke from a chimney). For this particular problem,
SCIPUFF is run assuming instantaneous emissions.

Figure 1. Map for the domain of the Dipole Pride experiment. The source location is indicated
with an X, along with its longitude and latitude coordinates. Locations for receptors and
meteorological measurements (surface and vertical profile) are also indicated.
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Methodology

The methodology used here is based on numerical AT&D simulations, ground
measurements, and a stochastic GA. The GA is used to iteratively refine an initial
random guess by varying the x, y, and z coordinates of the source, source
emission rate Q, and source dimensions σx, sigmay and sigmaz. The score for
each candidate solution is a metric of how well the simulated concentrations
match the DP26 observations.

Genetic algorithms

GAs are metaheuristic techniques that simulate biological evolution to solve
computational optimization problems (e.g., De Jong 2008; Holland 1975). They
are particularly suited for real-world applications where the solution space is
multi-modal and includes several suboptimal solutions.

These algorithms build consecutive populations of solutions, considered as
feasible solutions for a given problem, to search for a solution that gives the best
approximation to the optimum for the problem under investigation. To this end, a
fitness function is used to evaluate the goodness of each individuals based on
selection and reproduction with the intent to create new populations (i.e., genera-
tions). Each individual is represented by finite length vector of components called
chromosome, and each component, following the genetic anthology, gene. The
problem’s chromosome is codedusing seven continuous variables (x0; y0, z0,Q, σx,
σy, and σz). The process of these algorithms is composed by the following steps:

● P1: a random initial population is generated and a fitness function is
used to assign a score to each solution;

● P2: according to their fitness score, some solutions are selected to form
the parents, and new solutions are created by applying genetic operators
(i.e., crossover and mutation). For instance, the crossover operator
combines two solutions (i.e., parents) to form one or two new solutions
(i.e., offspring), while the mutation operator is used to randomly modify
a solution. Then, to determine which individuals will survive among the
offspring and their parents, a survivor selection is applied according to
the solutions’ fitness values;

● P3: step P2 is repeated until stopping criteria hold.

The evolutionary process we experimented with employed two widely used
selection operators, i.e., roulette wheel and tournament selector. We used the
first one to choose the solutions for reproduction, while we employed the
tournament selector to determine the solutions that are included in the next
generation (i.e., survivals). The former assigns a roulette portion to each solution
according to its fitness score. In this way, even if candidate solutions with a
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higher fitness have higher chance of selection, there is still a chance that they
may be not. On the contrary, applying the tournament selector, only the best n
solutions (usually n 2 ½1; 10�) are copied straight into the next generation.

Crossover and mutation operators were defined to preserve well-formed
values in all offspring. To this end, a single-point crossover has been used,
which randomly selects the same point in each solution taking the first part of
the chromosome (four genes of seven) from the first parent and the second part
(three remaining genes) from the second parent. Regarding the mutation, has
been applied an operator that selects a gene of the solution and changes it with a
random one in a feasible range. Crossover and mutation rates were fixed at 0.5
and 0.2, respectively (Allen et al. 2007a). The evolutionary process is stopped
when there is no improvement for a fixed number of consecutive iterations,
which means that the 50 individuals converged to a stationary point.

To cope with the random nature of the GA, we performed 30 runs for a
statistical study.

We used an implementation of a GA for the R statistical environment,
provided through the genalg library.

Fitness function

Central to every evolutionary algorithm is the definition of the error function,
often called fitness or objective function. The fitness function evaluates each
candidate solution quantifying the error between the observed data and the
corresponding simulated one. This information is used by the search algorithm
to drive the iterative process.

The definition of error, or uncertainty, in the model predictions is not
univocal, and depending on the case, different metrics to evaluate the accuracy
of a dispersion calculation can be adopted (Hanna, Chang, and Strimaitis 1993).
For instance, the error may represent the comparison of simulated and observed
peak concentrations over the entire sensor network, regardless of time and
location of occurrence of the peak. In other cases, the only realistic expectation
is to calculate the predictions that fall within a certain factor (e.g., 2 or 10) of the
observations. For this reason, inter-model comparison studies always include
evaluation of different performance metrics (e.g., Cervone and Franzese 2010b;
Chang et al. 2003b; Chang and Hanna 2004; Chang et al. 2005).

In this study, the AHY2 function has been used as fitness indicator,
defined by Allen et al. (2007b) as suitable to quantify the difference between
observed and simulated concentrations for source detection algorithms:

AHY2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½log10ðCo þ 1Þ � log10ðCs þ 1Þ�2

½log10ðCo þ 1Þ�2

vuut
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where Co is each sensor’s observed mean concentration, Cs is the corresponding
simulated value, and the horizontal bar represents the average over all the
observations.

To test the distance error between the parameters of the real source and the
“best” individual from the GA, the Euclidean distance has been used between the
best chromosome (lowest fitness) and the Dipole Pride source.

dðSo; SpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

ðSp � SoÞ2
q

where So is the vector of parameters for the observed source and Sp for the
simulated one .

Experiments and results

A series of experiments were performed to test the ability of SCIPUFF to
reconstruct the source, and a sensitivity study to the number and locations of
receptors, as well as to the number and locations of meteorological data.

Baseline source reconstruction

Figure 2 shows the result of the optimization that achieved the smallest error
between simulated and observed values. The real source characteristics mea-
sured at the time of the experiment are: x = −116.06E, y = 37.15 N, z = 6 m,
Q = 2.27E+13 kg-s/m3, σx=4 m, σy=7.5 m, σz=4 m.

Figure 3 compares the observed (top) to the simulated (bottom) values for the
baseline source reconstruction. Each line indicates a sensormeasurements (total 90
sensors), and is color-coded according to the rows. Green color lines indicate the
first row of sensors, red lines are for the second row, and blue lines for the
third row.

The top panel of Figure 3 shows the observed values collected at 15-minute
interval. The bottom panel of Figure 3 shows the simulated values at 3-second
interval. The graph shows a good temporal correlation between simulated and
observed values with respect to the first (green) and second (red) rows of
measurements. The blue lines, which represent the third row of measurements,
are nearly absent in the observations.

Figure 4 (left) shows the concentrations (in log scale) of the baseline simulated
release as a function of time in hours (horizontal axis) and space (vertical axis),
represented by the three rows of 30 sensors each. Sensors 1–30 are those closest to
the source and sensors 61–90 are those farther away (see Figure 1). The figure
shows how the gas concentrations spread over time and space. It takes about
10 minutes for the gas to reach the first row, 30 minutes for the second row of
measurements, and an additional 30 minutes (1 hour from the initial release) to
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Figure 3. Comparison of observed (top) and simulated (bottom) values for the baseline source
reconstruction. Each line indicates a sensor measurement (total 90 sensors), and is color-coded
according to the rows. Green color lines indicate the first row of sensors, red lines are for the
second row, and blue lines for the third row.

Figure 2. Baseline SCIPUFF reconstruction of the source using the characteristics measured at the
time of the experiments, and all meteorological data available. Sensor locations and meteor-
ological stations (surface + vertical profile) are also shown.
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reach the third row. Overall, it takes more than 4 hours for the concentration
measurements to fall below measurable thresholds.

Figure 4 (right) shows the concentrations (in log scale) of the observed values.
The observed values are much coarser than the simulated values because the
model simulations are run at a 3-second intervals, while the observed values are
only 15-minute averages.

Despite the mismatch in resolution, there is consistency in space and time
between simulated and observed values, especially with respect to the first and
second rows of measurements. It appears that the release spread more to the
West of the domain that the simulation reconstructs. The error computed when
all available data are used is summarized in Figure 2 and Table 1

Sensitivity to number and location of observations

A series of experiments were performed to test the ability of the proposed
methodology to reconstruct the source characteristics with a diminishing num-
ber of data. The first set of tests was designed to test the sensor number and
locations, and it is described below.

The second set of test is designed to test the number and location of the
surfacemeteorological measurements and of the vertical profile, and is described
in the next section.
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Figure 4. Spread of the released gas as a function of space (vertical axis: location of sensors) and
time (horizontal axis: elapsed time in hours) for the baseline simulation (left) and using the field
measurements (right). Simulations are run with a 3-second time step, while observations are
averages of 15 minutes, explaining the coarser representation of observed measurements.
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Eight different receptor subsets are tested:

● all 90;
● the first line (see Figure 3);
● the middle receptor line;

Figure 5. (a) Best run using the weather station numbers 2 and 5 without vertical profile, (b) Best
run using the weather station numbers 5 and 7 without vertical profile, (c) Best run using all the
weather station numbers without vertical profile, and (d) Best run using all the weather station
numbers including the vertical profile.

Table 1. Average error and standard deviation obtained using different sensor measurements
combinations.

90 sensors First line Second line Third line 9 sensors 5 sensors

Error 13.51 27.8 26.7 42.9 21.3 30.5
SD ±10.59 ±20.41 ±17.64 ±30.89 ±16.19 ±22.13

Results represent the average of 30 runs of the GA.
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● the last line;
● three sensors for line taken equidistant;
● five sensors taken equidistant on the middle line receptor;
● removing the vertical profile;
● taking only two weather station.

Table 1 summarizes all the results obtained, where each value represents the
average of 30 runs. The best source reconstruction (−116.05E, 37.16N, 23.06m,
8.16E+13 kg-s/m3, 6.97 m, 7.28 m, 3.68 m, error = 13.51) is found when all 90
sensor receptors are used (all three rows). When only individual rows of
sensors are used, best results are obtained using the second row of sensors
(error = 26.7), followed by slightly inferior results using the first row of sensors
(error = 27.8). Much inferior results are obtained using the third row of sensors
(error = 42.9).

Two additional tests are run selecting nine and five random sensors in the
second row of sensors. The results show that using 9 sensors, the error is only
slightly inferior to when all 30 sensors in the row are used (error 21.3 vs 26.8).
However, when only 5 sensors are used, the results degrade to an error of 30.5.

The results show that when using either five or nine random sensors selected
among those in the second row, the error is significantly better than when using
the third row alone. This result can be explained with the previously discussed
observation that the third row of sensors failed to measure significant concen-
tration levels.

Sensitivity to meteorological stations

The second set of tests focuses on determining the sensitivity of the proposed
methodology to varying meteorological data. The DP26 experiment includes
meteorological data for eight surface stations distributed throughout the
domain. Additionally, co-located with meteorological station number 4, a ver-
tical profile is collected at the beginning of each experiment by deploying a
weather balloon (see Figure 1).

The experiments were designed to test the sensitivity of the GA methodology
to the meteorological observations. The source reconstruction was performed
using all 90 ground sensors, and with different combinations of surface meteor-
ological stations and toggling the use of the vertical profile.

Table 2 summarizes the results for all the experiments performed. Each result
shows the average result for 30 runs.

As it can be seen in Table 2, the results are compared under three character-
istics, the average error over all the GA components (x, y, z, Q, σx, σy, σz), the
average error over the distance from the real source (x, y), and the average fitness
evaluated by the GA.
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For the first one, the results show that the best combination is using the
weather stations 5–7, these two stations are in the exact line of the sensors and in
the same way of the original plume, the second best score is achieved by the
combination 2–5, and these are the closest stations to the source and are
providing a good accuracy for the simulation.

The experiment involving all the weather stations plus the vertical profile
(Figure 5d) achieved the forth position, and without the vertical profile (Figure
5c) the eighth position with increments of 20.91% of the error.

An interesting point is given with the worst combination (2-4-5), and this
result shows how a single station (far away, in this case, from the source),
combined with other good stations could totally bias the research of the real
source. When only stations #2 and #5 are used, results show a large error and
poor performance. However, when stations #2 and #5 are used in combination
(Figure 5a), the results are near optimal, showing lack of accuracy when the
stations are tested individually.

The results in terms of average distance from the source show that the best
match is obtained when all the stations and the vertical profile are used. The
second best match is obtained using the same combination but without the
vertical profile. The error expressed in km is between 3.66 and 7.78 over an area
of 1250km2 . This result shows the importance of the location of the sensors. The
absence of the vertical profile leads to an overall increase in the error. However,
the decision to minimize the use of the vertical profile was made because it is
usually not available for accidental releases.

Conclusions

This paper shows the importance of the number and locations of meteorological
observations and ground concentration required to reconstruct the source
characteristics of an unknown pollutant. Experiments were performed using
the SCIPUFF T&D model and observations from the Dipole Pride experiment.
A traditional GA was used to drive the optimization process. Results show that
there is close correlation between the available data and the error, in particular
when data characterizing the atmosphere’s vertical profile are omitted. The
results are particularly important for the determination of how many sensors
and their locations should be deployed when planning for release experiments.

This work also indicates a sensitivity to meteorological data that are available.
It is not possible to assume that data at one point in space and time adequately
represent the meteorological conditions over the region, which can vary widely.
Prior work showed that one approach is to include the wind speed and
direction in the search variables, which can produce better agreement with
measurements than assuming that the meteorological data are representative of
the entire domain (Allen et al. 2007b; Krysta et al. 2006).
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