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ABSTRACT
The application of an association rule data mining algorithm is
described to combine remote sensing and in-situ geophysical data
to show a relationship between African dust storms, Caribbean
climate, and Caribbean coral disease. An analysis is performed to
quantify the relative statistical significance of each Caribbean
climate parameter on the prevalence of coral disease. Results
show that African dust storms contribute to an increased preva-
lence of coral disease in the Caribbean Sea, and that the correla-
tion between them is influenced by other climate parameters,
especially sea surface temperature.
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1. Introduction

About 11% of the historical extent of coral reefs around the world has been lost since
the early 2000s, and an additional 16% is severely damaged (Gardner et al. 2003). In the
Caribbean Sea, alone, approximately 90–95% of major reef-building corals have suffered
mass mortalities in the last forty years (Garrison et al. 2003). Coral reefs in this region
cover thousands of kilometres of coastline and play an integral role in the region’s
economy as a source of food, shoreline protection, and biopharmaceuticals (Burke and
Maidens 2004). Degradation to the coral, however, is associated with reduction in
abundance and diversity of fish, as well as a decline in topographical complexity
(Schutte, Selig, and Bruno 2010). Research shows that the key drivers of this degradation
include coastal development, sediment run-off, over-fishing, and pollution (Burke and
Maidens 2004), as well as increasing sea surface temperatures (SSTs) and disease
outbreaks.

Most coral evolved to thrive in a water temperature range between 23° and 29°C, and
deviations from this range are known to induce thermal stress (Raymundo, Couch, and
Harvell 2008; Shinn et al. 2000). The photosynthetic processes of the corals’ symbiotic algae
breakdown when the SST deviates from normal maximum or minimum by as little as 1.0°C
over a continuous period of 2–3 days (Burke andMaidens 2004). These anomalies trigger the
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expulsion of the corals’ photosynthetic symbionts, resulting in the appearance of white
pigmentation known as coral bleaching (Eakin et al. 2010). In recent years, both SST
anomalies and observations of coral bleaching have increased in the Caribbean significantly
(Eakin et al. 2010; Baker, Glynn, and Riegl 2008).

Aeolian dust transported from the Saharan region of Africa is believed to be con-
tributing to the increased incidence of coral disease in the Caribbean over the last forty
years (Garrison et al. 2003). The entrainment process that lifts the dust into the tropo-
sphere also captures bacteria, fungi, and other microorganisms (Griffin and Kellogg
2004). The dust itself contains nutrients vital to marine ecosystems such as nitrogen,
phosphorous, and iron; however, coral has evolved to thrive in nutrient-limited environ-
ments (Griffin and Kellogg 2004). When there is an abundance of nutrients, particularly
iron, sea-surface dwelling phytoplankton spawns harmful blooms that impede incoming
solar radiation and weaken coral immunity (Griffin and Kellogg 2004). Observations by
Selig et al. (2006) show a shift from coral- to algal-dominated communities in the last
forty years, implying a shift in nutrient availability, which has occurred in tandem with
increasing incidence of disease. Bruno et al. (2007) and Shinn et al. (2000) also suggest a
relationship between SST anomalies and coral disease outbreaks, supported by small-
scale field studies, in addition to a relationship between coral disease and other climate
variables. The mere presence of pathogens in dust does not guarantee coral succumb to
disease, but the resulting physiological stress due to the combined effects of enhanced
dust transport, nutrient enrichment, and SST anomalies encourages the proliferation of
disease (Shinn et al. 2000).

Previous work (Schutte, Selig, and Bruno 2010) has identified the need for quantifying
spatio-temporal changes in Caribbean coral communities at regional scales. Schutte,
Selig, and Bruno (2010) conducted in-situ surveys to quantify the relationship between
coral decline and macroalgal cover. Field sampling has its limitations in which such
sampling requires a large amount of data across a large spatial region that can be costly
and labour intensive (Nurlidiasari and Budhiman 2005); however, combining field data
with satellite data can provide additional insight not previously explored in depth. With
the increasing availability of high-resolution satellite observations, it is possible to per-
form a comprehensive assessment of coral reefs, environmental change, and the
response of coral to such changes at larger spatial scales. Since most documented
coral disease outbreaks occur at spatial scales of entire ocean basins (Selig et al. 2006),
satellite remote sensing is well-suited to monitor the variation of coral disease incidence
with changes in the regional environment. For example, high-resolution optical imagery
is already used to monitor visual changes in diverse tropical environments (Chauvaud,
Bouchon, and Maniere 1998) and Florida coral reef communities (Palandro et al. 2003).

Andréfouët and Riegl (2004) present a thorough assessment of the use of remote
sensing in studying coral reefs, from aerial photography to satellite observation. In
particular, satellite observations of aerosol optical depth in optical wavelengths by the
moderate-resolution imaging spectroradiometer (MODIS) (Prospero et al. 2002) and the
cloud-aerosol lidar and infrared pathfinder satellite observation (CALIPSO) (Adams,
Prospero, and Zhang 2012) show that Saharan dust events are derived from multiple
source points that vary seasonally. CALIPSO data show that the magnitude and extent of
Saharan storms also vary seasonally, with annual variations primarily driven by the North
Atlantic Oscillation (NAO), coupled with the Arctic Oscillation and the El Niño Southern
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Oscillations (ENSO) (Garrison et al. 2003; Griffin and Kellogg 2004; Goudie and Middleton
2001). During positive phases of the NAO (associated with above-average temperatures
in the Eastern USA) and periods of strong ENSO, the Sahara experiences drier than
normal conditions, and the flux of dust is at a maximum. This correlation between
maximum dust transport and the ENSO was directly observed in the average surface
concentration of African dust measured in situ at Barbados during the 1983–1984 ENSO
(Garrison et al. 2003). In recent years, satellite imagery has increasingly been used to
track African dust storms across the Atlantic.

This study uses an Association Rule Data Mining (ARDM) algorithm on a combination
of satellite remote-sensing and in-situ data to show a relationship between Saharan dust
storms, Caribbean climate, and the prevalence of coral disease, previously hypothesized
in studies that used direct observations or surveys (Selig et al. 2006; Shinn et al. 2000;
Bruno et al. 2007; Schutte, Selig, and Bruno 2010). In addition, the relative statistical
significance of each climate parameter is estimated to show that the prevalence of coral
disease is not only impacted by the presence of Saharan dust, but also by other
environmental parameters known to exhibit an influence on coral reef health (Selig
et al. 2006). The satellite remote-sensing measurements selected include SST, ultraviolet
(UV) absorbing aerosol index (AAI), the diffuse light attenuation coefficient at 490
nanometres (nm) (K490), and chlorophyll-a concentration (chl-a). The ENSO Southern
Oscillation Index (SOI) was also used in this study. The analysis of these parameters over
a period of 13 years, paired with in-situ observations of coral reef health, provides a
deeper understanding of the environmental states that drive change in the Caribbean
coral community and also shows the relationship between Saharan dust and coral
disease.

2. Background information

2.1. Coral disease

In general, coral disease is ‘any impairment to health resulting in physiological dysfunc-
tion’ (Raymundo, Couch, and Harvell 2008). It involves interactions between a host, an
agent, and the environment. In coral, disease is typically manifested as a change in
morphology or colour, e.g. lesion growth or white discoloration (Raymundo, Couch, and
Harvell 2008). To date, only a few of the total number of infectious biotic diseases
observed in coral in the Caribbean have identified pathogens, and the precise reasons
for the rapid spread of these diseases in the last few decades remain a poorly under-
stood issue. Pathogens have many supposed vectors and reservoirs, and some disease
may be associated with change in corals’ microbial communities, not necessarily an
infectious pathogen (Selig et al. 2006). Indeed, drivers of coral disease are not necessarily
new pathogens but may be other environmental processes that contribute to physiolo-
gical stress, such as poor water quality and increased SST (Raymundo, Couch, and
Harvell 2008). In fact, in the Caribbean, the increase in frequency and severity of coral
disease is coincident with major changes in structure and function as a result of
anthropogenic and natural causes (Raymundo, Couch, and Harvell 2008). These and
other stressors in the climate may act synergistically to promote disease outbreaks.
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In the 1970s, an outbreak of white band disease resulted in widespread mortality of
staghorn coral (Miller et al. 2009). In 1983, observations showed Caribbean-wide coral
reef mortalities and the infection of Caribbean Sea fans (Shinn et al. 2000). In 1987, mass
coral bleaching occurred in conjunction with a warm summer, and the proliferation of
the coral reef black band disease (Shinn et al. 2000). In the mid-1990s, the proliferation
of aspergillosis, a disease affecting sea-fans caused by the soil fungus aspergillus, was
reported (Shinn et al. 2000). Because the fungus is not known to reproduce in seawater,
and there were no fungal spores found in the Caribbean Sea, these observations led to
the hypothesis that there must be some external, periodic source of soil (Garrison et al.
2003).

Observations have also shown that coral bleaching is an ongoing process exacer-
bated during warm summer months, especially in years of strong ENSO. Unfortunately,
many coral pathogens grow optimally between 30°C and 35°C, which is within the
anomalous temperature range for Caribbean coral (Miller et al. 2009). In the Caribbean
Sea during the 1980s and 1990s, annual coral bleaching was observed to increase
logarithmically with SST anomalies; a 0.1°C increase in local SST caused a corresponding
35% increase in the extent of reported coral bleaching, and local SST increases of 0.2°C
resulted in mass coral bleaching events (Baker, Glynn, and Riegl 2008). As observations
of SST anomalies have continued increasing in recent years, observations of coral
disease have also increased, leading to the hypothesis that high SST may promote
growth and reproduction of pathogens (Eakin et al. 2010; Baker, Glynn, and Riegl
2008; Miller et al. 2009). In 2005, a large thermal anomaly resulted in a mass-bleaching
event in the Caribbean (Eakin et al. 2010), and this mass-bleaching event was correlated
with outbreaks of white plague and yellow-band disease (Miller et al. 2009).

2.2. Influence of Saharan dust

Dust from North Africa to the Caribbean Sea is transported westward between 5° and
25°N along easterly trade winds with a southern boundary limited by the intertropical
convergence zone, and a transit time of approximately 1 week (Moulin et al. 1997;
Adams, Prospero, and Zhang 2012). Inspection of satellite measurements from MODIS
(Prospero et al. 2002) and CALIPSO (Adams, Prospero, and Zhang 2012) suggests that
these North African dust events are derived from multiple source points. The precise
source of the dust varies seasonally. That is, during warmer months – May–September –
the primary source of African dust is near the Niger Delta region in Mali, while in colder
months – October–April – the primary source is near Lake Chad (Garrison et al. 2003).

In the Caribbean, in-situ measurements of microbe distribution in air samples have
indicated that both bacteria and fungi cross the Atlantic from North Africa with the
desert dust (Griffin and Kellogg 2004). When African dust is not present, the concentra-
tion of bacteria and fungi in Caribbean air samples is approximately half that measured
when the African dust is present (Garrison et al. 2003). Since the late 1970s, coincident
with accelerated coral reef decline, the amount of transatlantic dust available in the
atmosphere above the Caribbean Sea has increased (Prospero and Nees 1986).

African dust is primarily comprised quartz, clay minerals, iron oxides, and calcium
carbonate (Gasso, Grassian, and Miller 2010). It also contains major nutrients, such as
phosphorus and iron (Shinn et al. 2000). Among all of these elements, the most
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significant for coral reefs is iron. Once deposited in the ocean, iron feeds surface-dwell-
ing phytoplankton, but an excessive amount of iron results in algal blooms that can
inhibit sunlight and enable opportunistic marine microbial pathogens previously held in
check by nutrient limitations to infect the coral. If deposited dust particles are suffi-
ciently small, the particles’ residence time in the photic zone increases, and over such
long time-scales, iron can be extracted from the dust, maintaining high nutrient levels
(Garrison et al. 2003; Gasso, Grassian, and Miller 2010).

As discussed in Section 1, it is hypothesized that Saharan dust plays a significant role
in the increasing incidence of coral disease in the Caribbean, primarily due to the
transport of nutrients and bacteria. It is suspected that the proliferation of disease is
more a result of physiological stress due to a combination of effects, rather than the
existence of bacteria, alone (Shinn et al. 2000; Lesser et al. 2007; Rypien 2008;
Raymundo, Couch, and Harvell 2008).

Of the diseases monitored in the Caribbean, four are suspected to have a connection
with Africa dust events: aspergillosis, black band disease, white pox, and white plague
(Garrison et al. 2003). As aspergillosis, black band disease is well-characterized.
Experiments suggest that the relationship between black band disease and African
dust transport depends largely on iron concentration of the dust. In fact, it is suggested
that the iron facilitates the pathogenicity of the black band cyanobacterium (Garrison
et al. 2003). Two types of white plague have also affected Caribbean coral, even in the
most pristine regions (Garrison et al. 2003). The pathogen of one type of white plague
was identified as the bacteria Aurantimonas coralicida (Denner et al. 2003), which is also
suspected to cause the most damage to coral reefs in the Caribbean in the presence of
iron-rich dust (Garrison et al. 2003). Finally, white pox does not have a definitive origin in
African dust but is hypothesized to be introduced to coral reefs via several possible
sources, including soil runoff, river discharge, and atmospheric transport of soil (Garrison
et al. 2003).

2.3. Remote sensing of coral reefs and the environment

Disease proliferation in the Caribbean Sea caused by dust-borne pathogens cannot be
directly observed using remote sensing. Environmental variables that affect coral reefs,
such as SST, are already monitored using satellite remote sensing, and the effect of
pathogens on coral reefs can be inferred from the correlation of these data sets. These
variables can be used as proxies to determine relationships between coral reefs, disease,
and the environment.

As described in Mumby et al. (2004), aerosols such as African dust have both a
positive and negative impact on coral reefs by altering Earth’s radiative balance,
thereby controlling the amount of thermal stress experienced by corals, and by
being deposited on the ocean surface. Because dust aerosols absorb most strongly
in the UV region of the electromagnetic spectrum, certain sensors can distinguish the
dust from other background aerosols such as pollution, which reflect UV radiation.
The total ozone mapping spectrometer (TOMS) and its successor, the ozone monitor-
ing instrument (OMI), both measure the solar irradiance and the backscattered
radiance from Earth in this region to determine aerosol optical thickness and derive
values for AAI.
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The light field of ocean surface waters is described by the diffuse light attenuation
coefficient, k. This coefficient depends on the wavelength of incident radiation and is a
measure of the clarity of the water, which is a function of the concentration of dissolved
organic material and suspended sediments (Mumby et al. 2004). The combination of
estimated water column attenuation coefficients, UV, and optical data are used to
estimate the amount of solar radiation received by marine organisms. This parameter
is currently measured by several sensors, including MODIS, the Sea-viewing Wide Field-
of-view Sensor (SeaWiFS), the medium resolution imaging spectrometer, and the ocean
colour monitor.

Incident solar radiation at the ocean surface drives SST variations. Long-term mea-
surements of SST collected by the advanced very high-resolution radiometer (AVHRR)
are used by the national oceanic and atmospheric administration (NOAA) coral reef
watch programme to derive a suite of satellite data products to quantify coral bleaching-
related heat stress (Mumby et al. 2004; Eakin et al. 2010). The data products are derived
from the AVHRR-produced SST climatology at a 50 km spatial resolution and were used
in 2005 by NOAA to warn scientists of developing positive temperature anomalies over
the Caribbean region and of the subsequent coral bleaching and mortality that followed
(Eakin et al. 2010).

Although iron is one of the most important constituents of African dust, the use of
remote sensing to study its direct effects on coral reefs is limited (Gasso, Grassian,
and Miller 2010). This limitation is due to the need for additional information
regarding the state of the mixed layer and concentration of other nutrients, which
modulate the response of phytoplankton to dust (Gasso, Grassian, and Miller 2010).
Regions characterized by high iron concentration, however, are also characterized by
high concentrations of chl-a, which is measured by satellite ocean colour sensors
(Mahowald et al. 2005). Satellite ocean colour measurements by instruments such as
SeaWiFS are used to estimate the concentration of suspended material near the
ocean surface. Andréfouët et al. (2002) suggested that ocean colour observations
can be used to infer and track the primary pathways for dust and pathogens within
and among coral reef regions in order to assess the response of coral reefs to short-
term events. Erickson III et al. (2003) used SeaWiFS ocean colour measurements to
uncover correlations between atmospheric iron and chlorophyll concentrations on the
ocean surface in the Patagonian region. This research concluded the existence of a
strong temporal correlation between ocean surface monthly averages of simulated
atmospheric iron deposition and chlorophyll measured by SeaWiFS (Erickson III et al.
2003).

2.4. Data mining

NASA’s Earth observation programme provides continuous observations of the entire
Earth and generates an unprecedented amount of science data. These data are hetero-
geneous, dynamic in space and time, contain multivariate connections, and contain both
explicit and implicit spatial relationships and interactions (Mennis and Guo 2009).
Advanced data mining techniques are required to capture the spatio-temporal relation-
ship, autocorrelation, and idiosyncrasies of the data. Traditional statistical methods focus
primarily on univariate spatial autocorrelation and are unable to process large volumes
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of data. Further, traditional methods are not efficient at discovering embedded patterns
and information in vast data sets (Mennis and Guo 2009).

In general, data mining involves the analysis, recognition, and establishment of
associations and patterns in data (Lausch, Schmidt, and Tischendorf 2015). The mining
of frequent item-sets in a data set uncovers associations, correlations, and causal
relationships among items (Han, Kamber, and Pei 2011). Similarly, spatio-temporal data
mining involves the extraction of knowledge and the analysis of vast data sets to find
associations, structures, patterns, and other irregularities not explicitly stored in spatio-
temporal data (Lausch, Schmidt, and Tischendorf 2015).

The standard approach to find relationships among ecological events across different parts
of the globe requires the computation of correlation between spatio-temporal time series,
and then identifying the regionswith highest correlation (Tan et al. 2001). This approach is the
basis for ARDM, which was initially developed for market analysis (Tan et al. 2001).

Association rules are expressed in notation as {A, B} → C, where A and B are called the
antecedents and C the consequent. An antecedent is comprised a set of items, known as
an item-set, or a group of item-sets. Each rule describes the likelihood that C will occur
when the item-set occurs. The total number of antecedents in an item-set can vary
between one and the total number, N, of unique items in the data set, and the number
of consequents can vary on a similar range. This study uses a total of five antecedents,
where each antecedent represents one of the environmental parameters described in
Section 2. This study uses the total number of coral disease observations during each
sampling period as the single consequent.

When developing association rules from large transaction databases, each rule is
evaluated by two measures: confidence and support. The confidence of a rule can be
expressed mathematically as follows

Conf A; Bf g ! Cð Þ ¼ P Cj A; Bf gð Þ (1)

In other words, this measure describes the conditional probability of C given A and
provides the accuracy of the rule. The support of a rule describes the probability of
transactions containing both antecedent and consequent and provides awareness of
how often the rule is relevant. Support is calculated mathematically as in Equation (2)

Sup A; Bf g ! Cð Þ ¼ P A; B; Cf gð Þ (2)

While support and confidence provide measures of whether or not an association rule is
strong, it is possible for rules with high confidence to have the lowest correlation, or the
rules with the lowest confidence to have the highest correlation. This is because, as
noted in (Tan et al. 2001), the calculation of confidence is agnostic to the calculation of
support. Therefore, a correlation measure of interestingness known as lift is typically
used to rank association rules. Lift expresses the correlation between the antecedent
and the consequent and is written mathematically as in Equation (3)

Lift A; Bf g ! Cð Þ ¼ P A; Bf g[Cð Þ
P A; Bf gð Þ � P Cð Þ (3)

Lift values less than one represent a negative correlation between the antecedent and
consequent; in other words, there is a probability that the occurrence of one of these
values, or sets of values, leads to the absence of the other value (Han, Kamber, and Pei
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2011). On the other hand, lift values greater than one represent a positive correlation, in
which the occurrence of a value or set of values infers the occurrence of the other value
(Han, Kamber, and Pei 2011). Should the lift value equal one, the antecedents and
consequent are independent and no correlation exists.

Mennis and Liu (2005) demonstrated one successful application of ARDM to spatio-
temporal data. In their study, they determined associations among processes of socio-
economic change and urban growth using data from the US Census Bureau and land-
cover data from USGS aerial photography. Similarly, Rajasekar and Weng (2009) applied
ARDM to a combination of data from the advanced spaceborne thermal emission and
reflection radiometer, scaled normalized difference vegetation index, population density
data, and land-use land-cover data to explore relationships between land-surface tem-
perature and urban change. This study demonstrated the utility of ARDM to extract
quantitative information regarding the relationships among urban landscape parameters
derived from multiple data sets.

3. Methods

3.1. Study area

This study covers the time period between 1 August 1999 and 31 December 2010, and
the region of study is the Caribbean Sea, shown in Figure 1, with bounds 9.5°N, 24.5°N,
87.5°W, and 60.5°W.

3.2. Methodology

3.2.1. Data acquisition
Satellite data from four sensors were used in this study, as shown in Table 1. UV-AAI
represents the back-scattered radiance in the UV and indicates the presence of desert
dust in the atmosphere over the ocean and land. Daily level 3 UV AAI data from the

Figure 1. The study area. Every coral disease observation from 1999 to 2010 is represented by a red
asterisk (http://www.reefbase.org).
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Earth probe (EP) TOMS and the Aura OMI were obtained from the Goddard Earth Science
(GES) Data and Information Services Center (DISC). In both UV-AAI data sets, a value of 0
implies the existence of clouds, while values larger than 0 imply the presence of UV-
absorbing aerosols.

The diffuse light attenuation coefficient at 490 nm (K490) is a qualitative description
of water clarity in the blue-green portion of the electromagnetic spectrum and is
influenced by the concentration of dissolved organic materials (Mumby et al. 2004).
Sunlight incident on the ocean surface can either be absorbed or scattered, depending
on the amount of phytoplankton, suspended sediment, and dissolved organic material
that is present in the water column (Capone and Subramaniam 2005). Ocean colour
sensors such as SeaWiFS measure the back-scattered radiance in the visible wavelength
band to characterize the magnitude and variability of chlorophyll production on the
ocean surface. This information also suggests the role of the ocean in certain biogeo-
chemical cycles, such as that of iron. Chl-a measurements, therefore, can be used as a
proxy to observe nutrient density on the ocean surface. Level 3 standard mapped
images of 8 days composite K490 and chl-a measurements were obtained from the
Ocean Biology Processing Group (NASA Goddard Space Flight Center, Ocean Ecology
Laboratory, Ocean Biology Processing Group 2014).

Non-satellite data are described in Table 2. SST is the temperature of the top
millimetre of the ocean’s surface and is measured by several instruments including the
legacy AVHRR. SST data were obtained from NOAA’s Earth System Research Laboratory
(ESRL) physical sciences division. The optimum interpolation SST data product, based on
data from the Pathfinder AVHRR reanalysis, aqua advanced microwave scanning radio-
meter, and spatially smoothed, 7 days average in-situ buoy measurements, provides
continuous, unbiased SST data from 1985 to the present (NOAA Earth System Research
Laboratory. n.d.).

Table 1. Satellite data used for this study.
Satellite
sensor Product

Spatial
resolution (°)

Temporal
resolution Dates collected Parameter Format

EP-TOMS L3 UV-AAI 1 × 1.25 Daily 1 August 1999–31
December 2004

AAI ASCII

Aura OMI OMAEROe
(L3 UV-AAI)

0.25 × 0.25 Daily 1 January 2005–
31 December 2010

AAI HDF-5

OrbView-2
SeaWiFS

L3 SMI K490 5 × 5 8 day
average

1 August 1999–31
December 2010

Diffuse attenuation
at 490 nm

HDF-
EOS

OrbView-2
SeaWiFS

Chl-a 5 × 5 8 day
average

1 August 1999–31
December 2010

Chlorophyll
concentration

HDF-
EOS

Table 2. Non-satellite data used in this study.

Product Source
Spatial

resolution (°)
Temporal
resolution Dates collected Parameter Format

OI-SST
(v. 2.0)

NOAA 1 × 1 Monthly 1 August 1999–31
December 2010

SST NetCDF

SOI NOAA N/A Monthly 1 August 1999–31
December 2010

El Niño TXT

UNEP
GCDD

ReefBase N/A Yearly 1 August 1999–31
December 2010

Disease
Observations

MS Excel
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The SOI is a single value for each month that indicates the existence and intensity of
El Niño or La Niña. It is defined as the normalized difference in measured sea-level
pressures at Darwin, Australia, and Tahiti. A positive value of SOI indicates the existence
of La Niña, while a negative value of SOI indicates the existence of El Niño. To account
for the influence of ENSO on coral disease, SOI values data were obtained from the
NOAA ESRL physical sciences division archive of climate indices.

Observations of coral disease were obtained from Reefbase GIS (Reefbase 2016), an
online database originally compiled by the UN Environmental Programme (UNEP) World
Conservation Monitoring Centre (WCMC) in conjunction with the NOAA National Marine
Fisheries Service (NMFS). The original database was called the Global Coral Disease
Database (GCDD) (United Nations 2016). The GCDD was comprised of data mined
from peer-reviewed literature, technical reports, and volunteered data from individual
and organizational fieldwork. Total observations of various coral disease types thought
to be related to African dust are shown in Table 3.

Prior to 2016, the database was updated continually by users and provided a central
platform for aggregation and dissemination of disease data in a consistent format.
Although the data set was useful, it has a coarse temporal resolution of 1 year. The
original observations submitted to UNEP-WCMC by users included the date, month, and
year of each observation; however, it was not possible to obtain metadata for a large
number of observations directly from the GCDD, at the time this study was conducted.
The ReefBase data set, on the other hand, provides only the year of each observation. In
spite of this limitation, this study uses the ReefBase data product because it provides the
best available data over a large spatial scale and long time period. Due to the low
sampling rate compared to that of the satellite data, a piece-wise cubic Hermite inter-
polating polynomial was applied to interpolate disease counts between years and
obtain estimates every 3 months. This method avoids increasing the temporal resolution

Table 3. Total counts of all coral disease types or anomalies observed in the study region from 1999
to 2010, including predation.
Disease type Count Location(s)

Aspergillosis 20 Colombia, Belize, Bahamas, Dominican Republic, Honduras
Black blotch 2 Jamaica
Bacterial
bleaching

47 Colombia, Mexico

Black-band
disease

131 St. Lucia, Costa Rica, Venezuela, Colombia, Netherlands Antilles, St. Vincent, Puerto Rico,
Mexico, US Virgin Islands, Cayman Islands, Cuba, Turks and Caicos, Jamaica, Cuba,
Panama

Dark-spot
disease

113 Colombia, Venezuela, Netherlands Antilles, US Virgin Islands, Puerto Rico, Cayman Islands,
Cuba, St. Lucia, Jamaica, Mexico, Trinidad and Tobago

Unspecified 387 Costa Rica, Venezuela, Netherlands Antilles, St. Vincent, US Virgin Islands, Mexico, Cayman
Islands, Turks and Caicos, Colombia, Jamaica, Cuba, Panama, St. Lucia, Honduras, Haiti,
Puerto Rico, Bahamas, Dominican Republic, Dominican Republic, Guadeloupe,
Montserrat, British Virgin Islands, Aruba, Martinique, Trinidad and Tobago

Fungal disease 6 Mexico
Parrot fish
predation

2 Mexico

White pox 23 Colombia, Cuba, Mexico, Puerto Rico
Red-band
disease

5 Turks and Caicos, Costa Rica, Jamaica, Netherlands Antilles, Mexico

White plague 462 Colombia, US Virgin Islands, Puerto Rico, Turks and Ciacos, Cuba, Cayman Islands, Mexico,
St. Vincent, Netherlands Antilles, Costa Rica, Venezuela, Jamaica, Panama, Dominican
Republic, Trinidad and Tobago
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of the satellite data products, since the use of annual averages in these data would
result in loss of information. This method inherently assumes that the distribution of
disease observations is consistent with the actual trend of coral disease over time.

3.2.2. Preprocessing and preparation
Due to differences in spatial resolution between satellite sensors, the data used in this
study were re-gridded to a common 2° × 2° grid in MATLAB by applying a Delaunay
Triangulation algorithm and standard linear interpolation on the resulting data space.
After re-gridding, each data set was processed to create three-dimensional ‘stacks’ of
data with time along the Z-axis, longitude along the X-axis, and latitude along the Y-axis.

The spatio-temporal nature of satellite-based Earth science data presents several
challenges for traditional data mining techniques. In particular, the temporal autocorre-
lation of data can have an impact of the significance of any computed statistical
correlation (Tan et al. 2001). Reducing the short-term autocorrelation in time-series
data can be accomplished by aggregating the data into bins of 3 months intervals
(Tan et al. 2001). Subsequently, each time series, including the coral disease time series,
was reprocessed into bins containing average values over a period of 3 months. This
average inherently positioned the resulting data point in the middle of the 3 months
period.

Finally, seasonal variations in time series data are usually removed because the
seasonal cycle dominates the original signal, hindering the detection of anomalies
(Tan et al. 2001). In Earth science, in particular, it is advantageous to relate some
event in some location to an anomalous climate condition occurring in the same
location, region, or completely different part of the world. Anomalous climate conditions
are only apparent if periodic fluctuations corresponding to the seasons are removed.
Additionally, the seasonal signal is generally removed to make the original time series
stationary. The seasonal signal was removed from each time series using a 12 months
moving average. The primary limitation of the 12 months average, although not com-
plex to implement, is its tendency to spread the effects of deviations from average
values across neighbouring points in time (Tan et al. 2001).

For the ARDM algorithm, each data set was transformed into a binary table of
transactions in which each row of the table represents a set of events. A binary
transaction table describes the occurrence, or lacks thereof, of events and expedites
the generation of patterns that show the co-occurrence of these events. To create the
table, each data set was discretized into two clusters of similar characteristics. ARDM,
having been developed for market analysis, is designed to operate with nominal and
ordinal data, not numeric data (Mennis and Liu 2005). Since spatio-temporal data are
numeric, the data must be discretized into specific categories, i.e. low or high, near or
far. This discretization process removes some intrinsic information and can have a large
impact on ARDM results. Nevertheless, discretization is an essential procedure to the
ARDM algorithm because the number of discrete values in a geophysical time series can
be very large, resulting in an inordinate number of association rules with statistically low
significance. Selection of the discretization algorithm should consider the distribution of
the data set and the closeness of the data values. Since ARDM was originally designed to
deal with Boolean-like values, each data set is divided into low and high values based on
some predetermined threshold value (Yang, Tang, and Sun 2011).
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In this analysis, two discretization methods were used (1) in the simplest method, the
mean value of each data set is used the threshold to partition high and low values, and
(2) in the more complex method, a K-means clustering function is used. The K-means
function implementation partitions points in a two-dimensional matrix into k number of
clusters by finding k centroids and assigning each point to the cluster associated with
the nearest centroid. The process of selecting centroids seeks to minimize the total error
for each point, where the error is defined as the discrepancy between a point and its
centroid, or the squared distance (Steinbach, Karypis, and Kumar 2000). The input to the
K-means function is a data vector and the number of clusters, which was set at a value of
two. The resulting output was a one-dimensional vector containing the cluster indices of
each point. This vector was input into custom code to match each data point to the
appropriate cluster. The resulting bin centres are given in Table 4.

Data from the Reefbase coral disease database spanned from 1999 to 2010, but, as the
ReefBase data set contained no points for 2006 within the study region, this year was not
included. Each entry in the coral disease database was binned into the appropriate latitude
and longitude on a 2° × 2° grid. After binning each data entry, a time series of disease
observations was generated at each grid location. Each time series was then interpolated
using a piecewise cubic Hermite interpolating polynomial function due to the sparse
temporal resolution of the original data set. To visualize the data, consider the region off
the southern coast of Jamaica, as shown in Figure 2. This region covers 15.5°–17.5°N and
78.5°–76.5°W. The original time series, describing area-averaged coral disease observations
over the study period, is shown on the top X and right Y axes in Figure 3, along with the
time series after interpolation along the bottom X and left Y axes, where the X-axis
represents 3 months’ bins. The centroid of each 3 months bin is the 2nd month.

The distribution of the disease data set following discretization was biased towards
low values due to its spatial and temporal sparseness. The mean of this distribution was
unsuitable as a threshold for discretization because the threshold has the potential to be
set very high by a small number of large disease counts. Instead, a piece-wise function
was used on values below threshold. This threshold was set to 0.3 because the sequence
of interpolating the 12 months data set and binning the resulting 1 month data set into
bins containing 3 months’ averages generated values less than 1. After using this
threshold to delineate two low and high bins, those values at the extreme end of the
data set, greater than one, were binned into the high category. All 0 values were
discarded from this data set prior to analysis. The GCDD does not contain continuous
observations at each latitude and longitude over the study period; therefore, values of 0
in each time series generated for this study do not necessarily correspond to observa-
tions of non-diseased coral and may simply correspond to missing data. The resulting

Table 4. Centre points of bins for each satellite data set after applying the
discretization algorithms.
Parameter Low High

SST (°) 24.25 28.15
Chl-a (mg m−3) 0.23 8.09
K490 (m−1) 0.042 0.897
UV-AAI (unitless) ≤0 ≥0
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discretized values of coral disease observations, therefore, represent different degrees of
available observations, not the absence or presence of observations.

As with the disease data, the AAI data required a different discretization routine than
the other remote-sensing data. Figure 4 shows the distribution of AAI before discretiza-
tion. AAI ranges are defined such that values less than 0 represent non-UV-absorbing

Figure 2. Region (in red) for which the time series in Figure 3 was extracted and plotted.

Figure 3. Time series of original disease counts from the GCDD (black) and interpolated disease
counts (red).
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aerosols, while values greater than 0 represent UV-absorbing aerosols, such as dust, and
values close to 0, within a variance of 0.1, represent clouds. These rules for AAI were
coded into MATLAB as a piece-wise function and discretization was performed on the
AAI data set using this function. The resulting distribution of AAI values following
discretization are shown in Figure 5.

The K-means clustering algorithm was used to discretize the SST, chl-a, and K490 data
sets. When applied to SST, the algorithm created two clusters, where the cluster
classified as low was centred at 27.25°C, and the cluster classified as high was centred
at 28.15°C. When applied to chl-a, the K-means algorithm classified low values with a
cluster centred at 0.25 mg m−3 and high values with a cluster centred at 8.09 mg m−3.
Research shows that the average chl-a concentration measurement in the waters around
Cuba is 0.07 mg m−3 (Gonzalez et al. 2000); therefore, the histograms imply that for the
entire study period and study region, chl-as did not deviate significantly from the
average and were, in fact, significantly lower. To verify that the average value of chl-a
remained near average over the entire study period, the web-based GIOVANNI
Interactive Visualization and Analysis Tool available from GES-DISC was used to visualize
the average Sea-WiFS-measured chl-a between September 1999 and December 2010.
The average concentration is shown in Figure 6. Similarly, the distribution of K490 in the
region over the entire study period was also heavily weighted towards low values. The
K-means clustering algorithm created a low cluster centred at 0.04 m−1 and a high
cluster centred at 0.90 m−1. In literature, a K490 value of 1.0 m−1 is considered ‘high’.

3.2.3. Association Rule Data Mining (ARDM)
Preprocessed remote-sensing and coral disease observation data used for input to
ARMADA (Malone 2011) were first saved to comma-separated value files, where each

Figure 4. The distribution of UV AAI values over the entire region and study period, before
discretization.
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antecedent and consequent for each transaction were listed on a single row, separated
by commas. An example of an input transaction table, prior to discretization, is in
Table 5. To maximize the number of association rules generated for each experiment,
the support and confidence criteria were set to their minimum values of 1%.

Figure 5. The distribution of UV AAI values after discretization.

Figure 6. Time-averaged chlorophyll-a concentration for the study period.

1508 H. HUNTER AND G. CERVONE



Additionally, mining goals were set to extract only those goals where the consequent
was equal to a value in the coral disease observation time series.

3.2.4. Significance testing
ARDM explores large data sets to find patterns that satisfy some type of constraint.
Traditionally, rules are constrained by minimum support and minimum confidence
values, where confidence is considered to measure a rule’s strength and support is
considered to measure a rule’s statistical significance (Webb 2007). One serious limita-
tion of the rules developed by these techniques, however, is that there is a large risk of
generating spurious rules. Overcoming this problem requires evaluating the generated
rules using statistical significance tests. Statistical significance tests address the question
of whether or not the computed relationships between the given antecedents and
consequent actually exist. To calculate the statistical significance of rules generated by
ARDM, Webb (2007) suggested the use of the Fisher’s exact test. This test is used to
determine whether non-random associations exist between two variables by calculating
the hypergeometric probability of observing a given set of values. The null hypothesis is
that the given association rule or antecedent does not satisfy the minimum support and
minimum confidence constraints specified for the algorithm; that is, that a given rule is a
false discovery.

The Fisher’s exact test was applied to each parameter using the R statistical language.
The fisher test function in the R stats package examined whether or not a given
parameter was significant with regard to its relationship to coral disease observations.
The function generated five 2 × 2 contingency tables containing the support of the
relationship expressed by the corresponding column and row, as shown in Table 6.

Table 5. Example input transaction table for ARDM analysis prior to discretization.
Time (month of year) Lat. Bin Lon. Bin SST (°) Chl-a (mg m−3) K490 (m−1) UV-AAI Disease SOI

1 1 1 27.04 0.19 0.046 NaN 0 −4.4
2 1 1 26.20 0.32 0.057 NaN 0 −3.4
3 1 1 27.65 0.91 0.116 NaN 0 −4.0
4 1 1 27.32 0.20 0.045 NaN 0 −2.4
5 1 1 26.38 0.27 0.052 NaN 0 0.4
6 1 1 25.27 0.36 0.062 NaN 0 1.6
7 1 1 28.10 0.78 0.092 NaN 0 2.0
8 1 1 27.77 0.36 0.062 NaN 0 1.9
9 1 1 27.37 0.21 0.050 NaN 0 1.7
10 1 1 26.07 0.33 0.061 NaN 0 1.8
11 1 1 28.14 0.85 0.097 NaN 0 1.7
12 1 1 27.90 2.12 0.214 NaN 0 2.3

Table 6. Contingency table for SST and disease observations.
Number disease
observations (L)

Number disease
observations (H)

SST (L) 163 55
SST (H) 169 208

L represents a low number of disease observations or low value of SST, and H
represents a high number of disease observations or high value of SST. Ranges are
defined by the discretization algorithm as described Section 3.2.2.
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These values represent the probability of that parameter occurring with the consequent,
without regard to other parameters, and are calculated by the ARDM algorithm.

4. Results

The ARMADA tool generated a total of 146 rules, ranging from rules with one-item
antecedents to those with five-item antecedents, in which all parameters were used in
the analysis. Redundant rules, those containing fewer parameters than the total number
of parameters, are a subset of the rules containing all parameters. Redundant rules are
removed manually by comparing each rule with antecedent sets containing less than
five items to those containing exactly five items. Results are then further pruned by
calculating lift values for each rule and selecting only those rules with lift values greater
than one. Select association rules generated for the entire study region over the 1
August 1999 to 31 December 2010 time period are shown in Table 7. H represents the
high state of a parameter, and L represents the low state of a parameter. Since SOI is a
single value for every month, a positive value of SOI indicates the existence of La Niña,
and a negative value of SOI indicates the existence of El Niño.

The first rule conveys that a greater number of disease observations is probable when
SST is high, chl-a concentrations are low, K490 values are low, dust is present, and El
Niño is dominant. The lift calculated for this rule is 1.5366, which means that the
elements of this rule can be described as having a positive correlation, that is, the
occurrence of this particular combination of geophysical states infers the occurrence of a
greater number of disease observations. This rule would be considered strong because
its lift value is much greater than one. The second rule is similar; however, it shows that
the same state values for SST, chl-a, K490, and dust are likely to occur with a greater
number of disease observations even when La Nina is present. The lift value calculated
for this rule is 1.0947, indicating that although the correlation is considered positive, it is
not as strong of a correlation as that of the first rule, which favoured the presence of El
Niño. The third rule shows that a lower number of disease observations are likely when
SST, chl-a, and K490 values are low, dust is present, and La Nina is the dominant pattern.
Here, the lift value is 1.0742, implying the correlation is again positive, but not strong,
since it does not deviate much from a value of one. The fourth and fifth rules do not
contain all parameters; however, they are included in the table because they represent
non-redundant, unique rules with high lift values. The fourth rule shows that a lower
number of disease observations are likely when chl-a concentrations are low, K490
values are low, and dust is not present. The lift value calculated for this rule is greater
than one and greater than that of the previous rule, implying a greater likelihood of a
low number of disease observations co-occurring with the presence of non-UV-

Table 7. Select association rules generated for the study region over the 1999–2010 study period.
Rule SST Chl-a K490 UV-AAI SOI Disease Support Confidence (%) Lift

1 H L L H L H 104 37.8 1.5366
2 H L L H H H 104 26.9 1.0947
3 L L L H H L 92 26.4 1.0742
4 L L L L 15 48.4 1.9661
5 H L L L 71 25.5 1.0340
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absorbing aerosols. The final rule shows that a lower number of disease observations are
likely even when SST is in a high state, if it occurs with low chl-a concentrations, low
K490 values, and an El Niño pattern.

P values calculated and compared against a standard 95% confidence level for Fisher’s
exact test are presented in Table 8. This table conveys that given the distributions of the
original data sets, the least statistically significant parameters with regard to coral disease
observations are K490 and chl, with p values of 1, while the most statistically significant
parameters are AAI, SOI, and SST, with p values of 0.0208, 0.0001, and much less than 0.0001,
respectively. The results of Fisher’s exact test provide qualitative measures to describe the
relative significance of each parameter with regard to the number of coral disease observa-
tions and suggest that SST is the most significant driver of such observations.

5. Discussion

5.1. Impact of the ARDM algorithm

The rules generated using the ARDM algorithm indicate a relationship between African
dust and coral disease observations in the Caribbean Sea, modulated by SST. While the
result that coral disease is driven primarily by SST is not a new finding, the results of this
study support the hypothesis that African dust plays a role, as well, in conjunction with
other environmental parameters.

Fisher’s exact test produces a p value much less than 0.0001 with regard to the
relationship between SST and coral disease observations. For values of p < 0.05, the null
hypothesis is rejected, as it is for SST. This indicates that SST is a statistically significant
parameter in determining the prevalence of coral disease. This finding supports research
such as that of Selig et al. (2006), which hypothesizes that rising ocean temperatures
may be exacerbating the effects of infectious disease on coral reefs.

The first two association rules shown in Table 7 indicate that a greater number of
disease observations are positively correlated to the presence El Niño with a high SST
and the presence of dust, while less positively correlated to the presence of La Niña. This
non-definitive result suggests a weak correlation between disease observations and the
state of the El Niño, and the p values calculated using Fisher’s exact test support this
hypothesis. The p value for SOI is 0.0208 and because it is close to 0.05, it is considered
only marginally statistically significant. Previous research, however, has identified corre-
lations between El Niño and African dust. Specifically, the annual variation of exported
dust from the Sahara is shown to be driven by El Niño by Garrison et al. (2003), Griffin
and Kellogg (2004), and Goudie and Middleton (2001). These studies show that the

Table 8. P values for each environmental parameter discussed in this
article.
Parameter p Value

SST ≪0.0001
AAI 0.0001
SOI 0.0208
K490 1.0000
Chl-a 1.0000
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Sahara experiences drier than normal climate conditions in the presence of a strong El
Niño, contributing to high levels of dust concentration transported to the Caribbean Sea.

5.2. Statistical significance

Our results consider SST a statistically significant parameter with regard to coral disease,
and previous research shows a correlation between El Niño and African dust.
Additionally, the first rule in Table 7 indicates that disease observations are highly
correlated to the combined presence of dust, high SST, and El Niño; therefore, we
infer that this rule supports the hypothesis that African dust storms influence the
prevalence of coral disease observations.

The results of Fisher’s exact test also suggest that SST influences the prevalence of
coral disease in the Caribbean more than other environmental parameters considered.
The p values calculated for both chl-a and K490 are one, inferring that these parameters
are not statistically significant with regard to coral disease observations. As described in
Section 3, these results should be used with caution. The chl-a and K490 data sets used
for this study are biased towards low values. To mitigate this bias, further research
should consider a greater temporal range.

These results do not explicitly describe a relationship between dust concentrations
and SST but do infer a tightly coupled relationship between the prevalence of coral
disease and SST in the presence of dust. Given the results of the data mining algorithm
and the significance test, this study supports the hypothesis that the influence of African
dust storms on the number of coral disease observations is primarily dependent on
ocean temperature, rather than on turbidity and nutrient concentration.

5.3. Visual analysis

To understand the results from the application of the data mining algorithm as well as
those of Fisher’s exact test, data for the study region were obtained for quiet and active
years of dust storms using the web-based GIOVANNI Interactive Visualization and
Analysis Tool available from GES-DISC. To distinguish between quiet and active years,
a time series of UV AAI values from TOMS-EP were plotted between 2000 and 2005,
without removing the seasonal signal, as shown in Figure 7. From this plot, 2001 was
selected to represent a quiet year due to the dominance of AAI values below 1, implying
a relatively low concentration of UV-absorbing aerosols as compared to other years. The
year 2003 was then selected to represent an active year because the maximum AAI value
on this time series was found to occur between 2003 and 2004.

For each year in the analysis, the total number of coral disease observations was
obtained from the GCDD. In 2001, a total of 173 counts of coral disease were observed in
this region, while a total of 221 counts were observed in 2003. Figure 8 shows the
transport of African dust in 2001, represented by AAI, during the peak season for dust
transport. This image was generated using GIOVANNI and data from TOMS-EP.

For the entire year 2001, time series of area-averaged SST, chl-a, and K490 was
generated using GIOVANNI and Sea-WiFS data. Shown in Figure 9, the average trend
for chl-a in this region did not deviate significantly from an average of 0.12 mg m−3.
Similarly, as shown in Figure 10, K490 was not found to deviate significantly from an
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average value of 0.03 m−1. Figure 11 shows a monthly SST as measured by MODIS Terra
– because MODIS Aqua was not available until 2002 – and it shows a trend centred on
an average of 27.5°C and a maximum value at approximately 29.5°C.

The same process described previously was performed on data from 2003. Figure 12
shows the transport of African dust in 2003, represented by AAI, during the peak season
for dust transport. As for the previous images, this image was generated using
GIOVANNI and data from TOMS-EP. These images show that 2003 was dramatically
more active in terms of dust storms than 2001.

Figure 13 shows that the average trend for chl-a in this analysis region deviated
significantly from the regional average of 0.07 mg m−3 to an average of approximately
0.15 mg m−3, with a maximum value of approximately 0.16 mg m−3 during the period of
maximum African dust extent. Similarly, as shown in Figure 14, K490 was found to trend
higher than in 2001, with an average of approximately 0.04 m−1. Figure 15 shows a

Figure 7. Area-averaged daily TOMS-EP UV AAI between 2000 and 2005.

Figure 8. Time-averaged map of UV AAI measured by TOMS-EP for June 2001, depicting UV-
absorbing aerosols in the atmosphere over the Saharan region of Africa.
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monthly SST as measured by MODIS Aqua, and it shows a trend centred around an
average of 28°C and a maximum value at approximately 29.8°C.

This secondary analysis shows that our data mining and significance test results
support the hypothesis that K490 and chl-a are not statistically significant parameters
with respect to coral disease observations. Additionally, this analysis showed a substan-
tial influence of the concentration of UV-absorbing aerosols on both chl-a and K490

Figure 9. Sea-WiFS area-averaged time series of chl-a concentration between January 2001 and
December 2001.

Figure 10. Sea-WiFS area-averaged time series of K490 concentration between January 2001 and
December 2001.
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values; however, given the data sets used for this analysis, SST and the number of coral
disease observations were found only to be marginally influenced by this concentration.
The difference between the area-averaged values of SST in 2001 and 2003 was approxi-
mately 1°C, and the subsequent difference between the total number of coral disease
observations in these same years was approximately 48 counts, or 21%. These results,
therefore, do not explicitly infer a relationship between dust concentrations and SST, but
do infer a tightly coupled relationship between the number of coral disease observa-
tions and SST in the presence of dust. Therefore, given the results of the data mining
algorithm, the significance test, and the secondary analysis, the influence of African dust
storms on the number of coral disease observations is more dependent on ocean
temperatures than on turbidity and nutrient concentration.

Figure 11. Area-averaged SST time series from MODIS Terra, 11 µm channel, between January 2001
and December 2001.

Figure 12. Map of UV AAI from TOMS EP for 1–30 June 2003.
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5.4. Future research

The development of models, forecasts, and new data products to monitor and track the
influence of a changing climate on coral reefs remains in its infancy. Although organiza-
tions like NOAA have developed several data products to enable the comparative
analyses of coral reef ecosystems, geography, environmental conditions, and

Figure 13. Sea-WiFS area-averaged time series chl-a concentration between January 2003 and
December 2003.

Figure 14. Sea-WiFS area-averaged time series K490 concentration between January 2003 and
December 2003.
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anthropogenic stressors for the improvement of management approaches, research and
development in this field faces a few key difficulties. In this section, we present some of
these difficulties with recommendations for further research.

Currently, coral disease observations are reported by divers and input manually into
databases. The use of human researchers provides comprehensive and detailed classi-
fication of disease type and extent, and it is an appropriate method to retrieve accurate
information. For the purpose of studying a large area such as the Caribbean Sea,
however, this method suffers from low spatial and temporal resolution. As satellite
data becomes ubiquitous, it is increasingly possible to overcome the resolution limita-
tions by combining remote-sensing data with in-situ data; however, the process of
collecting and archiving the in-situ data must be improved. For example, the GCDD
did not have a consistent format; some entries contained detailed information while
others did not. To facilitate studies of long-term environmental impacts on coral, in the
Caribbean and elsewhere, research should be done to (1) impose a consistent data
reporting format, (2) create a single database, such as GCDD, containing these data that
are freely available to researchers, (3) develop rigorous quality assessment and control
policies for this database, and (4) improve and automate the ability to access, search,
and use this database.

At present, new sensors are being developed to study coral reefs. One example is the
Coral Reef Airborne Laboratory (CORAL), which is a suborbital platform bearing a push-
broom imaging spectrometer operating in the near UV through near infrared. This three
year mission seeks to study the relationship between coral reef health and biogeophy-
sical forcings and is a significant step in studying coral from space (NASA CORAL 2016).
Other research seeks to improve classification algorithms to automatically detect dis-
eased coral. Even with all this new available data, further research is required to develop
better spatio-temporal data mining algorithms. In preparation for this study, several data

Figure 15. Area-averaged SST time series from MODIS Terra, 11 µm channel, between January 2003
and December 2003.
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mining algorithms were considered that should be pursued in further research. Of them,
the most promising is sequential pattern data mining (SDM) and SDM with time lags,
and it is recommended that this study be again performed using a combination of SDM
with time lags and ARDM. This is because finding instantaneous relationships between
the variables presented in this study does not consider that environmental variables may
influence each other over a period of time. We recommend that new data mining
algorithms be developed to identify time-lagged associations among climatic variables.
Together, improved remote-sensing data and the data mining algorithms used to
analyse the data will contribute to improved models and forecasts of coral health.

6. Conclusion

This study supports existing hypotheses and shows not only a correlation between African
dust storms and coral disease, but also that this correlation is influenced by other environ-
mental parameters. The ARDM algorithm used in this study shows that there is a strong
relationship between African dust and coral disease observations that is primarily modu-
lated by temperature, rather than by water clarity or chlorophyll concentration. To deter-
mine the specific statistical significance of each environmental parameter with regard to its
influence on the number of coral disease observations, this study uses Fisher’s exact
significance Test. The results of this test and a secondary, qualitative analysis support the
hypothesis that coral disease in the Caribbean Sea is not influenced only by the absence or
presence of African dust, but the state of the local Caribbean climate, primarily SST.
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