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Abstract
This paper proposes a methodology that integrates deep learning and machine learning for automatically assessing damage
with limited human input in hundreds of thousands of aerial images. The goal is to develop a system that can help automatically
identifying damaged areas in massive amount of data. The main difficulty consists in damaged infrastructure looking very
different from when undamaged, likely resulting in an incorrect classification because of their different appearance, and the
fact that deep learning and machine learning training sets normally only include undamaged infrastructures. In the proposed
method, a deep learning algorithm is firstly used to automatically extract the presence of critical infrastructure from imagery,
such as bridges, roads, or houses. However, because damaged infrastructure looks very different from when undamaged,
the set of features identified can contain errors. A small portion of the images are then manually labeled if they include
damaged areas, or not. Multiple machine learning algorithms are used to learn attribute–value relationships on the labeled
data to capture the characteristic features associated with damaged areas. Finally, the trained classifiers are combined to
construct an ensemble max-voting classifier. The selected max-voting model is then applied to the remaining unlabeled
data to automatically identify images including damaged infrastructure. Evaluation results (85.6% accuracy and 89.09% F1
score) demonstrated the effectiveness of combining deep learning and an ensemble max-voting classifier of multiple machine
learning models to analyze aerial images for damage assessment.
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CNN Convolutional neural network
RNN Recurrent neural network
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NB Naive Bayes
KNN k-Nearest neighbors
RF Random forest
GB Gradient boosting
GBC Gradient boosting classifier
LR Logistic regression
LDA Linear discriminant analysis
NN Neural networks
USGS United States Geological Survey
USGS HDDS USGS Hazards Data Distribution System

1 Introduction

During disasters, large volumes of images are routinely cap-
tured by officials and often freely contributed by citizens. The
availability of high-resolution satellite and aerial platforms,
paired with the recent increase in unmanned aerial systems
and mobile devices, has led to the generation of massive,
distributed, spatiotemporal data. Our ability to generate data
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greatly exceeds our ability to analyzing them, leading to a
data-rich but knowledge-poor environment.

One of the main difficulties during disasters is the need to
obtain actionable knowledge from potentially massive and
unstructured data. In particular, large collection of imagery
presents several advantages and challenges. On the one hand,
they provide a broad view of a disaster area, which can poten-
tially provide mission critical knowledge. On the other hand,
however, they present several challenges because images are
collected using different sensors, angles, illumination, and
weather conditions, which make the automatic extraction of
knowledge a challenging task. Furthermore, disaster areas
present unique challenges because damaged infrastructure
looks very different from their undamaged appearance. Very
few examples exist of damaged infrastructure, as the data are
only now being collected for the first time.

For applications based on supervised machine learn-
ing (ML), including deep learning (DL), the production of
labeled data is often a bottleneck because it requires exten-
sive human intervention. The process of generating training
examples is time-consuming, prone to errors, and a major
obstacle to the full automation of tasks. Furthermore, for
some tasks, labeling data requires highly skilled domain
experts (Weiss and Provost 2003; Xiao et al. 2015; Zhu
et al. 2017). The need for large labeled data is particularly
stressed in deep learning, where the advantage of being able
to automatically learn very complex concepts comes with
the requirement of massive amount of manually annotated
examples and counter examples.

The main goal of this research is to understand the ‘mis-
takes’ that a deep learning algorithm makes when employed
to classify images showing damaged areas, and use thesemis-
takes to better predict the areaswithmost damage. Therefore,
what was referred as a ‘mistake’ is just a misclassification of
the deep learning algorithm that is due to the absence of
damaged areas in the training set. The main rationale is that
mistakes are useful when they are predictable.

In this article, we have developed a method that uses DL
for the automatic extraction of features from remote sensing
images, and multiple ML classifiers that use these features
along with geographical features that come with the imagery
data to automatically predict areas of damage from unseen
image data. To accomplish this task, a small set of images
were manually labeled as showing a flooded area, or not. The
most characteristics features associatedwith theflooded class
were identified using severalML classifiers, and an ensemble
max-voting model that combines multiple ML classifier was
then used to classify the unlabeled images. In this article,
image classification does not refer to assigning each indi-
vidual pixel to a class (e.g., vegetation, water), but rather to
assign the entire image to a specific class (e.g., flooded vs.
not flooded).

The proposed methodology was applied to the automatic
identification of flooded areas using 22,891 aerial images
collected by the Civilian Air Patrol (CAP) during the 2015
floods that affected the state of Texas.

The remainder of this article is organized as follows.
Section 2 highlights related work from both ML and DL per-
spective and flooding damage assessment aspects. Section 3
describes the proposed methodology, including evaluation
techniques and metrics. To demonstrate our methodology
using real-world data set, a case study along its results is
presented in Sect. 4. The paper concludes in Sect. 5 with
discussion of application potential of the proposed method-
ology.

2 Related work

In this section, we review some of the previous work that
bears on our contribution, from ML and DL perspectives
and from damage assessment (particularly flooding events)
aspects.

Machine learning (ML) is a branchof artificial intelligence
(AI).ML focuses on algorithms that can learn how to perform
a task from and make predictions on data without explic-
itly programmed instructions as conventional programming
does. However, ML relies on feature engineering, which is
the process of using domain-specific knowledge to manually
create features from data (Domingos 2012; Yang et al. 2018).
The extracted features, along with a set of labeled data that
have those features, are then used to train a ML algorithm.
The trained model can be used to make predictions for new
unseen data. The process of feature engineering is often dif-
ficult and time-consuming.

Deep learning (DL) is a branch of ML. DL can automat-
ically learn task-relevant features from a big set of labeled
data. Thus, DL bypasses the tedious process of feature engi-
neering that is essential for ML, but it requires much larger
labeled data sets compared with ML (Yang et al. 2018). The
big volume of annotated data required for training a DL
model with good performance is the main bottleneck for DL
(Yang et al. 2018). This is one of the main reasons that moti-
vate us to develop the method we propose in this article (see
Sect. 3) to produce good performance ML/DL models with
a reduced amount of labeled data. Recent rapid advances in
ML and especially in DL, plus the availability of many open
sourced resources (e.g., Google TensorFlow (Abadi et al.
2016), an open-source software library for machine learning
and deep learning), provide the potential to leverage spa-
tiotemporal big data to advance geospatial research and solve
relevant application challenges.

Different DL algorithms have been developed, among
which the convolutional neural network (CNN) (LeCun et al.
1998) and the recurrent neural network (RNN) (Elman 1990)
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and their variants are most successfully and commonly used.
A general conclusion in the literature (Krizhevsky et al.
2012; Simonyan and Zisserman 2014; LeCun et al. 2015;
Szegedy et al. 2016; Gu et al. 2017) about deep learning algo-
rithms is that CNNs are good at handling image and video
data and that RNNs shine for sequence data such as text.
CNNs integrate automatic feature extraction and discrim-
inative classifier in one model. A major reason that leads
to the increasing success for image recognition and analy-
sis using DL is the availability of big image repositories,
such as ImageNet (Deng et al. 2009), that support such work
for benchmarking. ImageNet (Deng et al. 2009) is an image
database that contains 3.2million labeled images and spreads
over 1000 categories. For example, well-known pre-trained
CNN models AlexNet (Krizhevsky et al. 2012), VGGNet
(Simonyan and Zisserman 2014),GoogLeNet (Szegedy et al.
2015), and Inception-v3 (Szegedy et al. 2016) are all trained
on the ImageNet, among which Inception-v3 achieved the
best performance (Szegedy et al. 2016).

Many ML classifiers have been developed in the litera-
ture. (ML algorithms implemented for classification tasks
are called classifiers.) Witten et al. (2011) introduced basic
ML and data mining methods, which include decision trees
(DTs), support vector machines (SVMs), and naive Bayes
(NB) classifiers; Amancio et al. (2014) carried out a sys-
tematic comparison of nine well-known ML supervised
classifiers, includingmultilayer perceptron (MLP), Bayesian
network, SVM, NB, k-nearest neighbors (KNN). Below, we
briefly review theML classifiers that we use in the case study
(elaborated in Sect. 4).

K-nearest neighbors (KNN) algorithm is the simplest
among all ML algorithms (Domingos 2015). KNN is a non-
parametric method used for classification and regression
(Altman 1992). It is a type of instance-based learning (also
called ‘lazy learning’), where the function is only approx-
imated locally and generalization of the training data is
delayed until classification (Daelemans and Van den Bosch
2005). Being a nonparametricmethod,KNN is often success-
ful in classification situations where the decision boundary is
very irregular (Domingos 2015). In low feature dimensions
(e.g., two or three), KNN usually works quite well. But as
the number of dimensions goes up, things fall apart quickly
(Domingos 2015). Thus, KNN is the most useful for large
data sets with a small number of features.

Decision trees (DTs) are a nonparametric supervised
learningmethod that can be applied to both classification and
regression problems (Quinlan 1986; Han et al. 2011; Bishop
2006). The goal is to create a model that predicts the value
of a target variable by learning simple decision rules inferred
from the data features. Advantages of DTs are as follows:
They can handle both numerical and categorical data; they
can deal with information that is noisy and/or incomplete
(Quinlan 1986). Limitations of DTs are as follows: They

can create complex trees that do not generalize the data well
(i.e., overfitting) (Domingos 2012); Theywould create biased
trees if some classes dominate. A multi-disciplinary survey
about automatic construction of DTs from data was investi-
gated in Murthy (1998), where important similar issues and
heuristics for DT construction from different problems are
identified and discussed. A framework for sensitivity analy-
sis of DTs can be found in Kamiński et al. (2018).

Ensemblemethods average the predictions ofmultipleML
algorithms to get a better prediction than those obtained from
any of the algorithms alone (Opitz and Maclin 1999; Polikar
2006; Rokach 2010). Two main techniques for ensemble
learning methods are bagging (i.e., bootstrap aggregating)
(Breiman 1996) and boosting (Freund and Schapire 1997).
Bagging uses bootstrapping, through training several dif-
ferent models independently, each using a different set
of samples and then averaging their predictions (Breiman
1996). In bagging methods, the averaged model is in gen-
eral better than any of the single model as its variance is
decreased. By contrast, boosting involves incrementally gen-
erating an ensemble by training each model to emphasize the
training samples that have been classified incorrectly in pre-
vious models, through reweighing those samples with much
higher weight (Gislason et al. 2006). In boosting methods,
multiple models are trained sequentially and the goal is to
reduce the bias of the averaged model.

Random forests (RFs) are an ensemble learning technique
that builds multiple trees based on random bootstrapped
samples of the training data (Breiman 2001). RF combines
randomDTswith bagging to achieve high classification accu-
racy (Breiman 1996). RFs in general do not suffer from
overfitting (as encountered by DTs), as the resampling is
not based on weighting (Gislason et al. 2006); RFs are not
sensitive to noise (Gislason et al. 2006) and do not require
long training time (Breiman 2001), because RFs train each
tree independently, using a random sample from the training
data, and thus are good for parallelism or distributed comput-
ing.Gradient boosting (GB) is aML algorithm that combines
gradient descent and boosting (Friedman 2001; Hastie et al.
2009); it is an ensemble learning method for improving the
predictive performance of classification or regression proce-
dures, such as DTs (Hastie et al. 2009). The advantages of
GB are as follows: (1) predictive power and (2) robustness
to outliers in output space (Hastie et al. 2009). Limitations
of GB: scalability; due to the sequential nature of boosting,
it is difficult to be parallelized (Hastie et al. 2009). Thus, for
data sets with a large number of classes, RF classifier as an
alternative to GB classifier is recommended.

Naive Bayes (NB) is a simple but also fast and reliable
probabilistic algorithmusingBayes’ theorem (Domingos and
Pazzani 1997). NB algorithms assume that the features rel-
evant to the annotated samples are independent (Domingos
and Pazzani 1997; Hastie et al. 2009). NB classifiers are scal-
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able due to their simplicity (Russell et al. 2003). Logistic
regression (LR) is a linear algorithm for classification task
rather than regression (Bishop 2006). LR algorithm esti-
mates the probability that describes the possible outcomes
of a binary classification task based on input features using a
logistic function. Specifically, LR, analogous to NB, extracts
a set of weighted features from the input annotated sam-
ples, takes logs, and then combines them linearly. LR is
robust against extreme data points (e.g., outliers). The most
important difference between NB and LR is that LR is a dis-
criminative classifier, while NB is generative (Ng and Jordan
2002). LR works well when the classes in given training data
set are linearly separable; however, in general, it tends not to
perform well when there are multiple or nonlinear decision
boundaries.

Linear discriminant analysis (LDA) is a classification
algorithm. The goal of LDA is to reduce dimensionality of
input samples and meanwhile maximize the discrimination
information among classes through generating discriminant
function (Bishop 2006; Hastie et al. 2009). LDA assumes
that the same covariance matrix is shared across classes, but
LR does not require such assumption; thus, LR is a more
robust algorithm than LDA (Press and Wilson 1978; Liong
and Foo 2013). However, Hastie et al. pointed out in Hastie
et al. (2009) that LDA and LR generate similar classifica-
tion results, even when LDA is used inappropriately (e.g.,
assumptions are not met).

Support vector machines (SVMs) (Hastie et al. 2009) are
supervised learning algorithms used for both classification
and regression analysis. SVMs can find global optimum,
because finding global optimum is a convex optimization
problem for SVMs. Thus, it can result in a unique solution.
This is an advantage compared with neural networks (NN,
elaborated below), which have multiple solutions associated
with local minima (Shawe-Taylor and Cristianini 2004). One
strength of SVM is that SVMalgorithms are also fairly robust
against overfitting, especially in high-dimensional feature
space. Another key advantage of SVMs is the use of kernel
functions to solve nonlinearly separable data set (Shawe-
Taylor and Cristianini 2004). Thus, one strength of SVMs
typically comes from using nonlinear kernels to model non-
linear decision boundaries. However, the biggest limitation
of SVMs lies in choice of the right kernel function for a given
problem (Burges 1998), even though in the literature, radial
basis function (RBF) kernel (Buhmann 2003) is the most
commonly used kernel function. In addition, SVMs do not
scale well to large data sets.

A neural network (NN) is a set of connected input/output
(neural) nodes with weighted connections between the nodes
(Bishop 2006; Hastie et al. 2009; Han et al. 2011). It can be
used for both classification and regressionproblems. For clas-
sification tasks, during the learning phase, the NN learns by
adjusting the weights according to given labeled data sam-

ples, in order to predict the correct class label of the unseen
data sample. When the number of hidden layers of a NN is
≥ 2, it is called a deep NN (i.e., deep learning). NNs require
long training time and large set of training samples to get a
trained model with good performance. However, NN algo-
rithms are inherently parallel, so parallelization techniques
can be used to speed up its computational process (Han et al.
2011).

Wainer (2016) compared 14 different classification algo-
rithms (including RF, GBC, linear SVM, SVM with RBF
kernel, 1-hidden-layer NN, KNN, NB, LDA, and LR) on
115 real-world binary datasets. (Binary here refers to binary
classification; for example, the label of flooding prediction is
flooded or not.) Wainer (2016) concluded that RF, SVMwith
RBF kernel, and GBC are the top three ML classifiers that
most likely result in the highest accuracy, especially between
RF and SVM with RBF kernel. In terms of training and test-
ing execution times, SVM with a RBF kernel is faster than
RF and GBC.

On damage assessment aspect, although there is now a
substantial body of work, there is somewhat less on using
DL for damage assessment for flood events and how the anal-
ysis result might be generated automatically. Most existing
methods are based on social media data such as Twitter and
Flickr, and these are now reviewed.

Cervone et al. (2016) proposed a method that leverage
social media such as Flickr and Twitter for tasking the
collection of remote sensing imagery during disasters for
damage assessment. Panteras and Cervone (2018) proposed
amethodology to compensate for missing satellite data using
social media for the 2015 flooding in North Carolina. Li et al.
(2018) also used social media for the data source for flood
mapping, where a kernel-based flood mapping model was
developed to map the flooding possibility for their study
area based on the water height points derived from tweets
and stream gauges. The identified patterns of Twitter activity
were used to assign the weights of flood model parameters.
However, social media data source is not reliable, simply
because it cannot be guaranteed the volume of and geoloca-
tion availability of social media data.

3 Methodology

This article proposes amethodology that leverages the power
of DL for automatic feature extraction and does not require
a large set of labeled data to produce a ML model with good
performance for a specific domain task (e.g., flooded image
classification). Figure 1 shows an overview of the method,
including the main components and flows between them.

Our method starts with a big set of unlabeled images,
which then are fed into a DL model pre-trained on ImageNet
(Deng et al. 2009) using TensorFlow to identify features.
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Fig. 1 Flowchart of our methodology (see Sect. 2 for feature engineering)

Specifically, we use a pre-trainedDLCNNmodel, Inception-
v3 (Szegedy et al. 2016), which has been trained on the
ImageNet data set (Deng et al. 2009) byGoogle usingTensor-
Flow. The pre-trained Inception-v3 model can differentiate
among 1000 different classes from images, such as “bridge”,
“boathouse”, or “plane”. We selected the model because
Inception-v3 achieved best performance on ImageNet data
set (see Sect. 2).

We then manually label a small set of randomly selected
images from the big unlabeled data set. Once the features are
identified by the DLmodel, we use them in combination with
the small set of manually labeled data to train multiple ML
algorithms.We select the top 20 TensorFlow output, plus, lat-

itude and longitude, as features (see Sect. 2 for details about
feature engineering). Adding specific geographical variables
(longitude and latitude) as predictors can have some strong
implications toward the classification output. They have the
limiting effect ofmaking the classification learned applicable
only to a certain geographical area. If data for new areas need
to be classified, it is likely that an entire new classification
task must be performed. On the other hand, the geographical
proximity to flooded and not-flooded areas is likely a very
discriminant predictor that can drastically increase the accu-
racy. In an operational setting, it is usually known areas that
are affected and those that are not, and because our method-
ology is based, partially, on manual labeling, it is safe to
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assume that geographical information is known. This is not a
limiting factor in the methodology, as the geographical vari-
ables can be omitted if unavailable, or if a general model is
required.

The next step is to split the small manually annotated data
set into two subsets (e.g., 70% for training, 30% for test-
ing). It is useful due to its speed, simplicity, and flexibility.
Generally, there is not a universally better ML algorithm for
all problems (Wolpert 1996; Salzberg 1997; Caruana and
Niculescu-Mizil 2006; Domingos 2015). The main reason
is that learning from finite labeled samples requires mak-
ing assumptions, and differentML algorithmsmake different
assumptions (a.k.a. bias) (Domingos 2012, 2015). It is nec-
essary to test which algorithm works best with a specific
problem. Thus, we train the images in the training set (with
the selected features) on nine well-knownML algorithms for
classification tasks (specifically KNN, GBC, RF, DT, NB,
LDA, LR, SVM, and NN).

Tomake eachMLmodel perform their ‘best,’ before train-
ing theML algorithms, we tune hyperparameters of eachML
algorithm on the training set (see details in Sect. 4.5). We use
k-fold cross-validation (Dubitzky et al. 2007;Bird et al. 2009;
Hastie et al. 2009; Witten et al. 2011) while fine-tuning the
hyperparameters to avoid overfitting, because it allows per-
formance variation across training sets to be examined and
thus can test how well the trained ML algorithms is able to
handle larger unseen data samples. In addition, k-fold cross-
validation can make good use of the small set of labeled data,
because all the labeled data are used for training and testing
in different folds through systematically creating multiple
train/test splits and averaging the results.

After fine-tuning, we use the best hyperparameters of each
ML algorithm to train on the training set and the models are
evaluated on the testing set. The top performance ML model
is selected as the optimal model to predict all the rest of
unlabeled images.

The fundamental goal of ML is to generalize or abstract
beyond the examples in the training set (Domingos 2012).
The primary objective of model evaluation is to estimate
howwell amodelwill performon unseen data (i.e., those data
samples not in the training set). After performingmodel com-
parison, we select the top performance ensemble max-voting
model that combines multiple ML algorithms for prediction.
The selected model is further evaluated using another small
set of manually checked images randomly selected from the
unlabeled set of images with multiple evaluation metrics
(elaborated below), including accuracy, F1 score, precision,
recall, and confusion matrix.

Bird et al. (2009) and Sokolova and Lapalme (2009) pro-
vide a comprehensive introduction to different evaluation
metrics for classification tasks. For classification problems,
accuracy is the most commonly used and the simplest model
evaluation metric; it measures the percentage of inputs in

the test set that are correctly classified by the classifier (Bird
et al. 2009; Han et al. 2011). Thus, the evaluation metric
we used in this article is accuracy while performing model
comparison. A confusion matrix (Provost and Kohavi 1998)
summarizes the performance of a classification algorithm. It
contains information about actual and predicted classifica-
tions and helps to determine what the classification model
is getting correct and what types of errors it is making.
(Thus, it provides insight not only into the errors being made
by the classifier but more importantly the types of errors
that are being made.) In addition, standard machine learning
evaluation metrics include precision (TP/(TP + FP)), recall
(TP/(TP+FN)), andF1 score (aweighted average of the preci-
sion and recall—a number between 0 and 1 that explains how
well the network performed where reaching its best value at
1 and the worst at 0), where TP = true positives, TN = true
negatives, FP = false positives, and FN = false negatives.

4 Case study: aerial image classification for
flooding hazard

The proposedmethodwas used to classify thousands of aerial
images relative to a flood event.

4.1 Data

The data used in this research are a collection of aerial
imagery collected from airplanes (CAP images) relative to
the 2015floods inTexas. The imagery is available through the
USGSHazards Data Distribution System (HDDS) Explorer1

Website. The data comprise of 22,891CAP images, collected
between May 16, 2015, and June 23, 2015.

4.2 Feature extraction using TensorFlow DLmodel

We used Google Inception-v3 pre-trained DLmodel on Ima-
geNet to identify and extract features using TensorFlow from
the whole set of data described in Sect. 4.1. We chose top 20
TensorFlow outputs plus latitude and longitude as the set
of features for training ML models. Features detected by
TensorFlow DL model can tell us what appear in the aerial
images, and geospatial location information (e.g., latitude
and longitude) bears important clue for flooding classifica-
tion. Figure 2 presents examples of the top two TensorFlow
outputs using the TensorFlow pre-trained DL model. Those
are two of the 22 features we used to train different MLmod-
els.

1 USGS Hazards Data Distribution System (HDDS) Explorer https://
hddsexplorer.usgs.gov/.
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Fig. 2 Row charts for top two TensorFlow output features for all aerial images (left: first; right: second) using the pre-trained Inception-v3 DL
model. Top 20 TensorFlow output features, plus geospatial information (i.e., latitude and longitude), are the feature set we used to train a series of
ML models

4.3 Manual annotation of aerial images as flooded
or not

In order to train ML models, besides the 22 selected features
described in Sect. 4.2, it is necessary to manually label a
small set of aerial images as either flooded or not flooded.
So the ML learners can learn from the small set of labeled
images along with the 22 features and produce a model with
good predictive performance.

We have developed an interactive Web app for manual
annotation of aerial images. We randomly selected 1000
images for manual annotation of whether an aerial image
is flooded. Among the 1000 labeled images, 613 images are
flooded and 387 not flooded. Figure 3 presents the visual
geospatial distribution of the randomly selected images that
are manually labeled. See Fig. 4 for examples of manually
labeled flooding images with its top 3 TensorFlow outputs.
(Annotators do not see the TensorFlow outputs while they
manually label the images.)

4.4 Encoding categorical features

As introduced in Sect. 4.2, we have 22 selected features, but
among which the type of the 20 features from TensorFlow
outputs is categorical (as shown in Fig. 2). Categorical fea-

tures are one common type of non-numerical data. This type
of features cannot be directly fed into ML models, because
all ML models require numerical data.

To encode the 20 categorical features (i.e., convert the
categorical values to numerical values), we first get all cate-
gorical values (the 1000 class names from ImageNet dataset)
and map those class labels to integer numbers (in our case,
mapping 1000 class names to integer 0 and 999). Then, we
use the mapping to encode all categorical features (including
those features extracted from the images in the training set
and also in the testing set, as well as in the larger set of unla-
beled images). It does not matter which class label is mapped
to which integer number, but it is important to keep the map-
ping consistent; that is, make sure to use the samemapping to
encode all of the involved data for all relevant tasks, in order
to make the performance of different MLmodels meaningful
and comparable.

4.5 Hyperparameter tuning and performance
comparison of multiple ML algorithms using
optimized hyperparameters

Hyperparameter tuning is the process of finding the set of
hyperparameter values of a machine learning algorithm that
produces the best model results. Hyperparameter tuning is
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Fig. 3 The geospatial distribution of the 1000 randomly selected labeled images

crucial because it is used to search for the best hyperparam-
eters of a machine learning algorithm for a given dataset.

In this research, we use grid search provided in Scikit-
Learn (Pedregosa et al. 2011) to tune hyperparameters of the
ML algorithms we used. Detailed settings about the hyper-
parameter tuning for each ML algorithm are provided in
AppendixA,wherewe also gave tuning results including best
hyperparameters and performance comparison with baseline
model that using the default hyperparameters.

As we introduced in Sect. 3, there is no single ML algo-
rithm that would work best for all problems. Thus, we trained
nine commonly used ML algorithms (GBC, RF, DT, NB,
LDA, LR, SVM, KNN, and NN) on our case study data set.
(Those algorithms are elaborated in Sect. 2.) For NB, spe-
cially, we used Gaussian NB. For SVM, in particular, we
used SVC (Ben-Hur et al. 2001), and the default kernel is
the (Gaussian) radial basis function (RBF) kernel (Buhmann

2003). For NN, we used multilayer perceptron (MLP) clas-
sifier. The splitting ratio of training and testing set is 70%
versus 30%. We used the mature ML Python library Scikit-
Learn (Pedregosa et al. 2011) (version 0.19.1), with the best
hyperparameters from fine-tuning for the 9ML algorithms to
compare the ML algorithms’ performance. The performance
comparison of the nine ML algorithms plus ensemble max-
voting of the nine ML algorithms is presented in Table 1.

From Table 1, it is obvious that GBC (100%, 86%),
RF (98.14%, 85.67%), and max-voting classifier (89.29%,
84.33%) ranked as top 3 trained models in terms of training
and testing accuracy. Among the top 3, max-voting classi-
fier took the least time to train the model (0.95s), about half
of the time GBC required (2.033s), and RF took 1.38s. As
introduced in Sect. 2, DT suffers from overfitting (90.86%,
79.33%)—actually, all themodels in italic in Table 1 encoun-
tered different degrees of overfitting.GBCdoes not scalewell
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labyrinth; wing; car mirror

(a) Top 3 TensorFlow output: dam, dike, dyke; alp; valley, vale

(b) Top 3 TensorFlow output: maze, (c) Top 3 TensorFlow output: lakeside,
lakeshore; boathouse; castle

Fig. 4 Manually labeled flooding CAP images examples. The sub-figure caption gives the top 3 TensorFlow outputs for the corresponding aerial
image. Annotators do not see the TensorFlow outputs when they manually label the images as flooded or not

because it needs to be trained sequentially, not in parallel.We
thus select max-voting classifier as our finalmodel to classify
the larger set of unlabeled aerial images as flooded or not,
because it is obvious that max-voting is the best model in
terms of training an testing score (thus without overfitting)
and that it requires less training time compared with other
trained models that has good training and testing accuracy
(i.e., GBC and RF).

4.6 Ensemblemax-voting classificationmodel
evaluation

From Table 1 and the model comparison and selection
analysis in Sect. 4.5, we choose the ensemble max-voting
classification model as the final model to automatically clas-
sify the rest of unlabeled 21,891 aerial images as flooded or
not. To further evaluate whether the max-voting model can
be generalized to new unseen data beyond the labeled data
from the training and testing set, we randomly selected 500
aerials images from the unlabeled 21,891 images and man-
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Table 1 Comparison of nine commonly used ML algorithms performance and the ensemble max-voting classifier combined all the nine ML
algorithms

ML model Training accuracy (%) Testing accuracy (%) Training time (s) Trained model size

GBC 100.00 86.00 2.033 905 KB

RF 98.14 85.67 1.380 128 KB

DT 90.86 79.33 0.010 5.3 KB

NB 78.71 77.67 0.022 1.3 KB

LDA 78.14 76.67 0.008 1.7 KB

LR 77.14 77.33 1.078 945 bytes

KNN 100.00 64. 67 0.001 145 KB

SVM 77.29 77.67 96.744 74 KB

NN 59.71 64.67 1.260 42 KB

Max-voting classifier 89.29 84.33 0.950 2.5 MB

GBC gradient boosting classifier, RF random forest, DT decision tree, NB Naive Bayes, LDA linear discriminant analysis, LR logistic regression,
SVM support vector machine, KNN K-nearest neighbors, NN neural network

Fig. 5 Confusion matrices for max-voting classifier

ually checked whether the prediction using the max-voting
model is correct or not. While performing the max-voting
model evaluation using the 500 manually checked images,
we used multiple metrics, in particular accuracy (85.6%), F1
(89.09%), precision (83.76%), and recall (95.15%), as well
as non-normalized and normalized confusion matrices. The
confusion matrices are shown in Fig. 5.

Three examples of predicted flooding aerial images, along
with its corresponding top 3 TensorFlow outputs, are shown
in Fig. 6. See Fig. 7 for the overviewmap of the aerial images
classified as flooded or not, where Fig. 8 presents a zoomed-
in detail.

5 Conclusion

Spatiotemporal big data can aid in monitoring the planet. To
digest and transform this vast amount of data into action-
able insights to help us live better, advanced methods and
technologies are required. With the rapid development of
computational power, machine learning and deep learning
models can be trained using large sets of annotated data
to automatically classify raw data (e.g., image and text)
from different sources into pre-defined categories. GeoAI
can allow us to observe environmental systems and how they
are changing through time in a quick manner, by turning the
data into useful information and using that information to
generate actionable insights.

In this research, we propose amethod that can leverage the
integrated power of deep learning and machine learning to
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cliff, drop, drop-off; rapeseed

(a) Top 3 TensorFlow output: dam, dike, dyke; boathouse; viaduct

(b) Top 3 TensorFlow output: valley, vale; (c) Top 3 TensorFlow output: lakeside,
lakeshore; boathouse; castle

Fig. 6 Examples of predicted aerial images automatically classified as flooded, along with its corresponding top 3 TensorFlow outputs

construct an ensemble max-voting machine learning classi-
fier with good performance from multiple machine learning
algorithms using only a small set of manually labeled data.
One important strength of our method, comparing with
pure deep learning based methods, is that domain-specific
meta-data relevant features that cannot be directly extracted
from images themselves using deep learning, for exam-
ple, geographical information (latitude and longitude) comes
with aerial images, can be integrated into machine learning
models. To demonstrate the effectiveness of the proposed
methodology, we have used a flooding event as a test bed.
The evaluation of the max-voting classifier on the case study

usingmultiplemetrics, including accuracy (85.6%), F1 score
(89.09%), precision (83.76%), recall (95.15%), and confu-
sion matrix (see Fig. 5), has demonstrated the effectiveness
of our method.

This method can be applied not only to flooding events,
because it is domain independent and can be applied to
other domains. Examples include hurricanes, earthquakes, as
well as feature extraction related to food security and trans-
portation from aerial images, which is emphasized in the AI
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Fig. 7 Overview map of 22,891 aerial images classified as flooded or not, among which 1000 are manually labeled (613 flooded and 387 not
flooded), and flooding status of 21,891 is automatically classified by our ensemble max-voting ML model that integrated multiple ML models (see
Fig. 8 for a zoomed-in detail)
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Fig. 8 A zoomed-in detail for Fig. 7. The value of max-voting model prediction for the demonstration aerial image (i.e., 1) means the trained
max-voting model automatically classifies this aerial image as flooded

challenge by the World Bank, in collaboration with WeR-
obotics and OpenAerialMap.2
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2 Using AI For Good: A New Data Challenge To Use AI To
Triage Natural Disaster Aerial Imagery https://www.forbes.com/sites/
kalevleetaru/2018/01/20/using-ai-for-good-a-new-data-challenge-to-
use-ai-to-triage-natural-disaster-aerial-imagery.

A Hyperparameter tuning settings and
tuned results

In this appendix, we provide some details of the hyperpa-
rameter tuning process and results for the multiple machine
learning algorithms introduced in Sect. 4.5. Appendix A.1
provides the hyperparameter settings including hyperpa-
rameter grids for each ML algorithms we tuned, and
Appendix A.2 presents the optimized hyperparameters for
each ML algorithm and how many percentage of accuracy
each algorithm improved compared with its correspond-
ing baseline model that uses the default hyperparameters in
Scikit-Learn (version 0.19.1).

A.1 Hyperparameter settings for tuningmultiple ML
algorithms

While machine learning model parameters are learned dur-
ing training (such as weights and bias in a neural network),
hyperparameters need to be set before training by researchers
or data scientists. Taking a neural network as an example,
its hyperparameters include the number of hidden layers,
number of neurons in each hidden layer, how many itera-
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Table 2 Hyperparameter settings

ML model Hyperparameter grid Combinations Fits

GBC { ‘learning_rate’: [0.001, 0.005, 0.01, 0.05, 0.1, 0.2], ‘min_samples_split’: [2,
4, 6, 8, 10, 20], ‘min_samples_leaf’: [2,4,6,8], ‘max_depth’: [5, 8, 10, 15,
20, 25], ‘max_features’: [‘sqrt,’ ‘auto,’ ‘log2,’ None], ‘subsample’: [0.5,
0.6, 0.8, 0.9, 1.0], ‘n_estimators’: [10, 50, 100, 150, 200] }

86,400 432,000

RF { ‘n_estimators’: [10, 20, 30, 40, 50, 60, 70, 75, 80, 85], ‘max_depth’: [5, 10,
15, 20, 25, 30, 40], ‘min_samples_leaf’: [2, 4, 6, 8, 10], ‘max_features’:
[‘sqrt,’ ‘auto,’ ‘log2,’ None] }

1400 7000

DT { ‘criterion’: [‘gini,’ ‘entropy’], ‘max_depth’: [None, 10, 15, 20, 25, 30, 35],
‘min_samples_leaf’: [2, 4, 6, 8, 10], ‘max_features’: [‘auto,’ ‘sqrt,’ None] }

210 1050

LR { ‘penalty’: [‘l1,’ ‘l2’], ‘C’: [0.001, 0.01, 0.1, 1, 10, 100] } 12 60

KNN { ‘n_neighbors’: [2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34,
36, 38, 40, 42, 44, 46, 48], ‘weights’: [‘uniform,’ ‘distance’], ‘p’: [1, 2] }

96 480

SVM { ‘kernel’: [‘linear,’ ‘poly,’ ‘rbf,’ ‘sigmoid’], ‘gamma’: [10, 1, 0.1, 0.01,
0.001, 0.00001], ‘C’: [0.1, 1, 10, 100, 1000] }

120 600

NN { ‘alpha’: [1e-5, 5e-5, 1e-4, 5e-4, 1e-3, 1e-2]; ‘hidden_layer_sizes’: [(3,5),
(5,10), (9,15), (25,), (50,), (100,), (200,)]; ‘solver’: [‘lbfgs’];
‘random_state’: [None, 2, 4, 5, 7, 9]; ‘max_iter’: [100, 200, 300, 500];
‘activation’: [‘identity,’ ‘logistic,’ ‘tanh,’ ‘relu’] }

4032 20,160

tions, and what is activation function to use. Scikit-Learn
has implemented a set of sensible default hyperparameters
for all models, but these are not guaranteed to be optimal for
a specific problem. The best hyperparameters are in general
impossible to be pre-determined, and tuning hyperparame-
ters of a model is where machine learning turns from science
into trial-and-error-based engineering.

Hyperparameter tuning reliesmoreon experimental results
than theory, and thus, the best practice to determine the
optimal settings is to runMLmodels on many different com-
binations of hyperparameters and evaluate the performance
of eachmodel. Evaluating eachmodel only on the training set
can lead to one of themost fundamental problems inmachine
learning: overfitting. An overfit model may look impressive
on the training set, but will most probably not be able to gen-
eralize to new unseen data in a real-world application. The
standard procedure for hyperparameter optimization avoid-
ing overfitting is through cross-validation.

In this research, we use 5-fold cross-validation while tun-
ing the ML models (as introduced in Sect. A.2, 10-fold is
a better setting. However, considering the expensive com-
putation of tuning many combinations of hyperparameters,
we chose 5-fold for the tuning process.) We also used all
CPU cores (20 cores) available on our Linux Server. Table 2
provides the hyperparameter settings we used to search best
parameter for each ML model using Scikit-Learn Grid-
Search. In Table 2, Combinations refers to the number of
hyperparameter combinations and Fits refers to the number
of model fits calculated based on the fold (in our case, the
fold number = 5) used for cross-validation and the hyperpa-
rameter combinations.

Note that we used nine algorithms in total in Sect. 4.5, but
we just tune seven ML models here. The reasons are as fol-
lows: for NB, there is no hyperparameter to be tuned; LDA
has a closed-form solution and therefore has no hyperparam-
eters to be tuned either.

A.2 Hyperparameter tuning results and comparison
with baseline MLmodels

Using the hyperparameter settings we provided in Table 2,
we tuned the ML models, and Table 3 provides the best
parameters from our hyperparameter tuning and also the
performance improvement compared with corresponding
baseline ML models that used default hyperparameter set-
tings.

In Table 3, in the training accuracy and testing accu-
racy columns, left value refers to accuracy score of the best
model and right refers to that of baseline model. We can see
that almost all ML models have better performance when
using best hyperparameters from tuning, and some models
are improved substantially (e.g., SVM and NN).

While comparing the model improvement using best
hyperparameters from tuning against baseline line model,
we used 10-fold cross-validation. The main reason we set k
as 10-fold is based on conclusion in the literature, as Witten
et al. (2011) introduced, tests on different datasets, with dif-
ferent learning techniques, have shown that 10 is about the
right number of folds to get the best estimate of error.
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Table 3 Hyperparameter tuning results

ML model Time Best parameters Training accuracy
(best, baseline) (%)

Testing accuracy
(best, baseline) (%)

Improvement of
training accuracy (%)

Improvement of
testing accuracy (%)

GBC 191.4 m { ‘learning_rate’: 0.1,
‘min_samples_split’: 20,
‘max_depth’: 25,
‘min_samples_leaf’: 8,
‘subsample’: 0.9,
‘max_features’: None,
‘n_estimators’: 150 }

87.71, 85.57 86.67, 85.00 2.50 1.96

RF 1.3 m { ‘max_features’: None,
‘n_estimators’: 20, ‘max_depth’:
15, ‘min_samples_leaf’: 2 }

86.43, 82.86 86.00, 81.33 4.31 5.74

DT 0.9 s { ‘max_depth’: 25,
‘min_samples_leaf’: 10,
‘max_features’: None,
‘criterion’: ‘entropy’ }

83.57, 80.86 82.00, 77.67 3.36 5.58

LR 6.6 s { ‘penalty’: ‘l1,’ ‘C’: 100 } 75.00, 66.29 74.33, 61.00 13.15 21.86

KNN 1.3 s { ‘weights’: ‘distance,’
‘n_neighbors’: 18, ‘p’: 1 }

61.00, 58.57 63.67, 57.00 4.15 11.70

SVM 137.1 m { ‘C’: 0.1, ‘gamma’: 10, ‘kernel’:
‘linear’ }

76.57, 59.71 78.67, 64.67 28.23 21.65

NN 83.9 m { ‘activation’: ‘identity,’
‘hidden_layer_sizes’: (200,),
‘solver’: ‘lbfgs,’ ‘alpha’: 0.01,
‘max_iter’: 500, ‘random_state’:
None }

58.57, 51.86 59.00, 49.33 12.95 19.59
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